Step 1: Known Information.
Number of moles of helium gas: \( n = 6 \)
Temperature increase: \( \Delta T = 20^\circ \text{C} = 20 \, \text{K} \)
Universal gas constant: \( R = 8.31 \, \text{J mol}^{-1} \, \text{K}^{-1} \)
Step 2: Work Done at Constant Pressure.
For an ideal gas at constant pressure, the work done is given by: $$ W = n R \Delta T $$ Step 3: Substitute Values.
Substitute the known values: $$ W = 6 \cdot 8.31 \cdot 20 $$ Simplify: $$ W = 6 \cdot 166.2 = 997.2 \, \text{J} $$ Final Answer: \( \boxed{997.2 \, \text{J}} \)
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for: