The following data is given for a ternary \(ABC\) gas mixture at 12 MPa and 308 K:

\(y_i\): mole fraction of component \(i\) in the gas mixture
\(\hat{\phi}_i\): fugacity coefficient of component \(i\) in the gas mixture at 12 MPa and 308 K
The fugacity of the gas mixture is _________ MPa (rounded off to 3 decimal places).
Step 1: Calculate the fugacity of each component. For Component \(A\): \(f_A = 0.55 \times 0.75 \times 12 = 4.95 \, {MPa}\) For Component \(B\): \(f_B = 0.20 \times 0.80 \times 12 = 1.92 \, {MPa}\) For Component \(C\): \(f_C = 0.25 \times 0.95 \times 12 = 2.85 \, {MPa}\)
Step 2: Sum the fugacities of all components to find the total fugacity of the mixture. \[ f = f_A + f_B + f_C = 4.95 + 1.92 + 2.85 = 9.72 \, {MPa}\]

Match the List-I with List-II.
Choose the correct answer from the options given below:
The figures I, II, and III are parts of a sequence. Which one of the following options comes next in the sequence at IV?

A color model is shown in the figure with color codes: Yellow (Y), Magenta (M), Cyan (Cy), Red (R), Blue (Bl), Green (G), and Black (K). Which one of the following options displays the color codes that are consistent with the color model?

Consider a process with transfer function: \[ G_p = \frac{2e^{-s}}{(5s + 1)^2} \] A first-order plus dead time (FOPDT) model is to be fitted to the unit step process reaction curve (PRC) by applying the maximum slope method. Let \( \tau_m \) and \( \theta_m \) denote the time constant and dead time, respectively, of the fitted FOPDT model. The value of \( \frac{\tau_m}{\theta_m} \) is __________ (rounded off to 2 decimal places).
Given: For \( G = \frac{1}{(\tau s + 1)^2} \), the unit step output response is: \[ y(t) = 1 - \left(1 + \frac{t}{\tau}\right)e^{-t/\tau} \] The first and second derivatives of \( y(t) \) are: \[ \frac{dy(t)}{dt} = \frac{t}{\tau^2} e^{-t/\tau} \] \[ \frac{d^2y(t)}{dt^2} = \frac{1}{\tau^2} \left(1 - \frac{t}{\tau}\right) e^{-t/\tau} \]