The wavelength of an electron is \( 10^3 \) nm. What is its momentum in kg m s\(^{-1}\)?
\( 6.625 \times 10^{-34} \)
Step 1: Use de Broglie's Equation
According to de Broglie's hypothesis, the momentum of a particle is given by: \[ p = \frac{h}{\lambda} \] where: - \( h = 6.625 \times 10^{-34} \) Js (Planck's constant), - \( \lambda = 10^3 \) nm \( = 10^{-6} \) m.
Step 2: Substitute the Given Values
\[ p = \frac{6.625 \times 10^{-34}}{10^{-6}} \] \[ = 6.625 \times 10^{-28} \text{ kg m s}^{-1} \]
Step 3: Verify the Correct Answer
Thus, the momentum of the electron is \( 6.625 \times 10^{-28} \) kg m s\(^{-1}\), which corresponds to Option (3).
Match the following: