Question:

The wavelength of an electron is 103 10^3 nm. What is its momentum in kg m s1^{-1}?

Show Hint

The de Broglie wavelength formula p=hλ p = \frac{h}{\lambda} is used to calculate the momentum of a particle. Ensure that the wavelength is converted into meters before substitution.
Updated On: Mar 13, 2025
  • 6.625×1031 6.625 \times 10^{-31}
  • 6.625×1037 6.625 \times 10^{-37}
  • 6.625×1028 6.625 \times 10^{-28}
  • 6.625×1034 6.625 \times 10^{-34}  

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation


Step 1: Use de Broglie's Equation 
According to de Broglie's hypothesis, the momentum of a particle is given by: p=hλ p = \frac{h}{\lambda} where: - h=6.625×1034 h = 6.625 \times 10^{-34} Js (Planck's constant), - λ=103 \lambda = 10^3 nm =106 = 10^{-6} m. 

Step 2: Substitute the Given Values 
p=6.625×1034106 p = \frac{6.625 \times 10^{-34}}{10^{-6}} =6.625×1028 kg m s1 = 6.625 \times 10^{-28} \text{ kg m s}^{-1}

 Step 3: Verify the Correct Answer 
Thus, the momentum of the electron is 6.625×1028 6.625 \times 10^{-28} kg m s1^{-1}, which corresponds to Option (3). 

Was this answer helpful?
0
0