To solve the problem, we need to calculate the energy of a photon with wavelength 500 nm using Planck’s constant and the speed of light.
1. Formula for Energy of a Photon:
The energy $E$ of a photon is given by:
$ E = \frac{hc}{\lambda} $
where
$h = 6.63 \times 10^{-34}\, \text{J·s}$ (Planck’s constant)
$c = 3 \times 10^8\, \text{m/s}$ (speed of light)
$\lambda = 500\, \text{nm} = 500 \times 10^{-9}\, \text{m}$ (wavelength)
2. Substituting the values:
$ E = \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{500 \times 10^{-9}} $
3. Calculate the numerator and denominator:
Numerator = $6.63 \times 10^{-34} \times 3 \times 10^{8} = 1.989 \times 10^{-25}$
Denominator = $500 \times 10^{-9} = 5 \times 10^{-7}$
4. Calculate Energy:
$ E = \frac{1.989 \times 10^{-25}}{5 \times 10^{-7}} = 3.978 \times 10^{-19} \, \text{J} $
Final Answer:
The energy of the photon is $ {3.98 \times 10^{-19} \, \text{J}} $.