Energy difference for hydrogen-like atoms is:
\[
E \propto Z^2 \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right)
\Rightarrow \lambda \propto \frac{1}{Z^2 \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right)}
\]
For Li\(^{2+} \): \( Z = 3 \), transition from 3 to 2
\[
\lambda_1 \propto \frac{1}{3^2 \left( \frac{1}{2^2} - \frac{1}{3^2} \right)} = \frac{1}{9 \left( \frac{1}{4} - \frac{1}{9} \right)} = \frac{1}{9 \cdot \frac{5}{36}} = \frac{4}{5}
\]
For He\(^{+} \): \( Z = 2 \), transition from 4 to 1
\[
\lambda_2 \propto \frac{1}{2^2 \left( \frac{1}{1^2} - \frac{1}{4^2} \right)} = \frac{1}{4 \cdot \frac{15}{16}} = \frac{4}{15}
\]
So,
\[
\frac{\lambda_2}{\lambda_1} = \frac{4/15}{4/5} = \frac{1}{3}
\Rightarrow \lambda_2 = \frac{\lambda}{3}
\]