We are given the points \( A(2, 3, k) \), \( B(-1, k, -1) \), and \( C(4, -3, 2) \), and we need to prove that \( AB = AC \) to show the type of triangle.
Step 1: Find the distance \( AB \)
The distance between two points \( (x_1, y_1, z_1) \) and \( (x_2, y_2, z_2) \) in 3-dimensional space is given by the formula:
\[
\text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}
\]
The distance between points \( A(2, 3, k) \) and \( B(-1, k, -1) \) is:
\[
AB = \sqrt{((-1) - 2)^2 + (k - 3)^2 + (-1 - k)^2}
\]
\[
AB = \sqrt{(-3)^2 + (k - 3)^2 + (-1 - k)^2}
\]
\[
AB = \sqrt{9 + (k - 3)^2 + (k + 1)^2}
\]
Expanding the squares:
\[
AB = \sqrt{9 + (k^2 - 6k + 9) + (k^2 + 2k + 1)}
\]
\[
AB = \sqrt{9 + 2k^2 - 4k + 10}
\]
\[
AB = \sqrt{2k^2 - 4k + 19}
\]
Step 2: Find the distance \( AC \)
Similarly, the distance between points \( A(2, 3, k) \) and \( C(4, -3, 2) \) is:
\[
AC = \sqrt{(4 - 2)^2 + (-3 - 3)^2 + (2 - k)^2}
\]
\[
AC = \sqrt{2^2 + (-6)^2 + (2 - k)^2}
\]
\[
AC = \sqrt{4 + 36 + (2 - k)^2}
\]
Expanding the square:
\[
AC = \sqrt{4 + 36 + (k^2 - 4k + 4)}
\]
\[
AC = \sqrt{k^2 - 4k + 44}
\]
Step 3: Set \( AB = AC \)
Since \( AB = AC \), we equate the two distances:
\[
\sqrt{2k^2 - 4k + 19} = \sqrt{k^2 - 4k + 44}
\]
Squaring both sides:
\[
2k^2 - 4k + 19 = k^2 - 4k + 44
\]
Simplifying:
\[
2k^2 - k^2 = 44 - 19
\]
\[
k^2 = 25
\]
\[
k = 5
\]
Step 4: Find the angle
Now, we will use the fact that the triangle is isosceles (since \( AB = AC \)) to find whether it is a right-angled triangle. The condition for a right-angled triangle is that the dot product of two vectors representing two sides of the triangle is zero.
The vectors \( \overrightarrow{AB} \) and \( \overrightarrow{AC} \) are:
\[
\overrightarrow{AB} = B - A = (-1, 5, -1) - (2, 3, 5) = (-3, 2, -6)
\]
\[
\overrightarrow{AC} = C - A = (4, -3, 2) - (2, 3, 5) = (2, -6, -3)
\]
The dot product of \( \overrightarrow{AB} \) and \( \overrightarrow{AC} \) is:
\[
\overrightarrow{AB} \cdot \overrightarrow{AC} = (-3)(2) + (2)(-6) + (-6)(-3)
\]
\[
\overrightarrow{AB} \cdot \overrightarrow{AC} = -6 - 12 + 18 = 0
\]
Since the dot product is zero, the angle between \( AB \) and \( AC \) is \( 90^\circ \), confirming that the triangle is a right-angled isosceles triangle.
Thus, the triangle is a right-angled isosceles triangle.
\bigskip