Step 1: Establish relation between \( r \) and \( h \)
From the given vertical angle \( 60^\circ \), the half-angle is \( 30^\circ \), so:
\[
\tan 30^\circ = \frac{r}{h} \Rightarrow r = \frac{h}{\sqrt{3}}.
\]
Step 2: Express volume in terms of \( h \)
The volume of a cone is:
\[
V = \frac{1}{3} \pi r^2 h.
\]
Substituting \( r = \frac{h}{\sqrt{3}} \):
\[
V = \frac{1}{3} \pi \left(\frac{h}{\sqrt{3}}\right)^2 h = \frac{1}{3} \pi \frac{h^3}{3} = \frac{\pi}{9} h^3.
\]
Step 3: Differentiate with respect to time
\[
\frac{dV}{dt} = \frac{\pi}{9} (3h^2) \frac{dh}{dt}.
\]
Given \( \frac{dV}{dt} = \frac{1}{\sqrt{3}} \):
\[
\frac{1}{\sqrt{3}} = \frac{\pi}{9} \times 3 \times 9 \frac{dh}{dt}.
\]
\[
\frac{dh}{dt} = \frac{1}{9\pi}.
\]
Thus, the correct answer is \( \boxed{\frac{1}{9\pi}} \).