The magnitude of a vector
\( \mathbf{v} = x\hat{i} + y\hat{j} + z\hat{k} \)
is given by:
\[
|\mathbf{v}| = \sqrt{x^2 + y^2 + z^2}
\]
1. Magnitude of \( \mathbf{a} \):
\[
|\mathbf{a}| = \sqrt{(2)^2 + (-1)^2 + (1)^2} = \sqrt{6}
\]
2. Magnitude of \( \mathbf{b} \):
\[
|\mathbf{b}| = \sqrt{(1)^2 + (-3)^2 + (-5)^2} = \sqrt{35}
\]
3. Magnitude of \( \mathbf{c} \):
\[
|\mathbf{c}| = \sqrt{(-3)^2 + (4)^2 + (4)^2} = \sqrt{41}
\]
A triangle is a right-angled triangle if the dot product between two vectors representing two sides of the triangle is zero. Let's calculate the dot product of the vectors
\( \mathbf{a} \) and \( \mathbf{b} \),
\( \mathbf{b} \) and \( \mathbf{c} \),
and \( \mathbf{c} \) and \( \mathbf{a} \).
1. Dot product \( \mathbf{a} \cdot \mathbf{b} \):
\[
\mathbf{a} \cdot \mathbf{b} = (2)(1) + (-1)(-3) + (1)(-5) = 0
\]
Since \( \mathbf{a} \cdot \mathbf{b} = 0 \), the vectors \( \mathbf{a} \) and \( \mathbf{b} \) are perpendicular, meaning the angle between them is \( 90^\circ \).