Question:

The vector with terminal point \( A(2, -3, 5) \) and initial point \( B(3, -4, 7) \) is:

Show Hint

To find a vector from one point to another, subtract the coordinates of the initial point from the corresponding coordinates of the terminal point: \[ \overrightarrow{BA} = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}. \]
Updated On: Jan 18, 2025
  • \(\hat{i} - \hat{j} + 2\hat{k}\)
  • \(\hat{i} + \hat{j} + 2\hat{k}\)
  • \(-\hat{i} - \hat{j} - 2\hat{k}\)
  • \(-\hat{i} + \hat{j} - 2\hat{k}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

The vector from \( B(3, -4, 7) \) to \( A(2, -3, 5) \) is given by: \[ \overrightarrow{BA} = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}, \] where \( (x_1, y_1, z_1) \) are the coordinates of point \( B \), and \( (x_2, y_2, z_2) \) are the coordinates of point \( A \). 

Substituting the given coordinates: \[ \overrightarrow{BA} = (2 - 3)\hat{i} + (-3 - (-4))\hat{j} + (5 - 7)\hat{k}. \] 

Simplify each term: \[ \overrightarrow{BA} = (-1)\hat{i} + (1)\hat{j} + (-2)\hat{k}. \] 

Thus: \[ \overrightarrow{BA} = -\hat{i} + \hat{j} - 2\hat{k}. \] 

Hence, the vector is \(-\hat{i} + \hat{j} - 2\hat{k}\), and the correct answer is (D).

Was this answer helpful?
0
0