Question:

The vector equation of the straight line $ \frac{1-x}{3}=\frac{y+1}{-2}\,=\frac{3-z}{-1} $

Updated On: Jun 7, 2024
  • $ \overrightarrow{r}=(\hat{i}-\hat{j}+3\hat{k})+\lambda (3\hat{i}+2\hat{j}-\hat{k}) $
  • $ \overrightarrow{r}=(\hat{i}-\hat{j}+3\hat{k})+\lambda (3\hat{i}-2\hat{j}-\hat{k}) $
  • $ \overrightarrow{r}=(3\hat{i}-2\hat{j}-\hat{k})+\lambda (\hat{i}-\hat{j}+3\hat{k}) $
  • $ \overrightarrow{r}=(3\hat{i}+2\hat{j}-\hat{k})+\lambda (\hat{i}-\hat{j}+3\hat{k}) $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Comparing $ \frac{1-x}{3}=\frac{y+1}{-2}=\frac{3-z}{-1} $
with $ \frac{x-{{x}_{1}}}{l}=\frac{y-{{y}_{1}}}{m}=\frac{z-{{z}_{1}}}{n} $
$ \Rightarrow $ $ {{x}_{1}}=1,{{y}_{1}}=-1,{{z}_{1}}=3 $ and $ l=-3,m=-2,z=1 $
$ \Rightarrow $ $ l=3,m=2,z=-1 $
$ \therefore $ Vector equation of line is
$ \overrightarrow{r}=\overrightarrow{a}+\lambda \overrightarrow{b} $
$=(1,-1,3)+\lambda (+3,+2,-1) $
$=(\hat{i}-\hat{j}+3\hat{k})+\lambda (+3\hat{i}+2\hat{j}-\hat{k}) $
$ \therefore $ $ \overrightarrow{r}=(\hat{i}-\hat{j}+3\hat{k})+\lambda (3\hat{i}+2\hat{j}-\hat{k}) $
Was this answer helpful?
0
0

Concepts Used:

Equation of a Line in Space

In a plane, the equation of a line is given by the popular equation y = m x + C. Let's look at how the equation of a line is written in vector form and Cartesian form.

Vector Equation

Consider a line that passes through a given point, say ‘A’, and the line is parallel to a given vector '\(\vec{b}\)‘. Here, the line ’l' is given to pass through ‘A’, whose position vector is given by '\(\vec{a}\)‘.  Now, consider another arbitrary point ’P' on the given line, where the position vector of 'P' is given by '\(\vec{r}\)'.

\(\vec{AP}\)=𝜆\(\vec{b}\)

Also, we can write vector AP in the following manner:

\(\vec{AP}\)=\(\vec{OP}\)\(\vec{OA}\)

𝜆\(\vec{b}\) =\(\vec{r}\)\(\vec{a}\)

\(\vec{a}\)=\(\vec{a}\)+𝜆\(\vec{b}\)

\(\vec{b}\)=𝑏1\(\hat{i}\)+𝑏2\(\hat{j}\) +𝑏3\(\hat{k}\)