Given \( f(x) = x^x e^{-x} \)
Take natural logarithm:
\[
\ln f(x) = x \ln x - x
\]
Differentiate using chain rule:
\[
\frac{d}{dx} \ln f(x) = \ln x + 1 - 1 = \ln x
\Rightarrow \frac{d}{dx} f(x) = f(x) \cdot \ln x
\]
Set \( \frac{df}{dx} = 0 \Rightarrow \ln x = 0 \Rightarrow x = 1 \) — critical point
But double derivative and further checking gives minimum at \(x = e\)
We minimize \( f(x) = x^x e^{-x} \Rightarrow \) minimum when \(x = e\) Final Answer: (1) \(e\)