x | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
y(x) | 1 | 3 | 6 | 9 | 12 |
Let \( \Omega \) be a non-empty open connected subset of \( \mathbb{C} \) and \( f: \Omega \to \mathbb{C} \) be a non-constant function. Let the functions \( f^2: \Omega \to \mathbb{C} \) and \( f^3: \Omega \to \mathbb{C} \) be defined by \[ f^2(z) = (f(z))^2 \quad {and} \quad f^3(z) = (f(z))^3, \quad z \in \Omega. \]
Consider the following two statements:
S1: If \( f \) is continuous in \( \Omega \) and \( f^2 \) is analytic in \( \Omega \), then \( f \) is analytic in \( \Omega \).
S2: If \( f^2 \) and \( f^3 \) are analytic in \( \Omega \), then \( f \) is analytic in \( \Omega \). Then, which one of the following is correct?
Let \( U = \{z \in \mathbb{C}: \operatorname{Im}(z) > 0\} \) and \( D = \{z \in \mathbb{C}: |z| < 1\} \), where \( \operatorname{Im}(z) \) denotes the imaginary part of \( z \).
Let \( S \) be the set of all bijective analytic functions \( f: U \to D \) such that \( f(i) = 0 \).
Then, the value of \( \sup_{f \in S} |f(4i)| \) is:
The table shows the data of running a machine for five years. The original machine cost is Rupees 70,000. In order to minimize the average total cost per year for running the machine, the machine should be replaced after ............. years. (Answer in integer)
A company purchases items in bulk for getting quantity discounts in the item’s price. The price break-up is given in the table. The annual demand for the item is 5000 units. The ordering cost is Rupees 400 per order. The annual inventory carrying cost is 30 percent of the purchase price per unit. The optimal order size (in units) is .......... (Answer in integer)