A negligibly thin horizontal plate PQ has a length 3 m and width 1 m. It is being pulled along its length at a speed of 1 m/s in between two static parallel plates as shown in the figure. The gap of 6 cm between the plates is filled with a Newtonian fluid of dynamic viscosity \( \mu = 0.2 \, {N-s/m}^2 \). The thin plate is located at 3 cm from the top surface. The velocity distribution between the thin plate and the static plates is linear.
The steady force required to pull the plate is __________ N (answer in integer).
The table shows the data of running a machine for five years. The original machine cost is Rupees 70,000. In order to minimize the average total cost per year for running the machine, the machine should be replaced after ............. years. (Answer in integer)
A company purchases items in bulk for getting quantity discounts in the item’s price. The price break-up is given in the table. The annual demand for the item is 5000 units. The ordering cost is Rupees 400 per order. The annual inventory carrying cost is 30 percent of the purchase price per unit. The optimal order size (in units) is .......... (Answer in integer)
Three plants P1, P2, and P3 produce 6, 1, and 9 thousand liters of fruit juice, respectively. The produced fruit juice is transported to three distribution centers D1, D2, and D3 with a requirement of 7, 5, and 4 thousand liters of juice, respectively. The transportation cost (in hundreds of Rupees) from each plant to each distribution center is given in the table. The total transportation cost (in hundreds of Rupees) in the initial basic feasible solution using Vogel’s approximation method is ............. (Answer in integer)