Let \( U = \{z \in \mathbb{C}: \operatorname{Im}(z) > 0\} \) and \( D = \{z \in \mathbb{C}: |z| < 1\} \), where \( \operatorname{Im}(z) \) denotes the imaginary part of \( z \).
Let \( S \) be the set of all bijective analytic functions \( f: U \to D \) such that \( f(i) = 0 \).
Then, the value of \( \sup_{f \in S} |f(4i)| \) is:
Let \( \Omega \) be a non-empty open connected subset of \( \mathbb{C} \) and \( f: \Omega \to \mathbb{C} \) be a non-constant function. Let the functions \( f^2: \Omega \to \mathbb{C} \) and \( f^3: \Omega \to \mathbb{C} \) be defined by \[ f^2(z) = (f(z))^2 \quad {and} \quad f^3(z) = (f(z))^3, \quad z \in \Omega. \]
Consider the following two statements:
S1: If \( f \) is continuous in \( \Omega \) and \( f^2 \) is analytic in \( \Omega \), then \( f \) is analytic in \( \Omega \).
S2: If \( f^2 \) and \( f^3 \) are analytic in \( \Omega \), then \( f \) is analytic in \( \Omega \). Then, which one of the following is correct?
A square paper, shown in figure (I), is folded along the dotted lines as shown in figures (II) and (III). Then a few cuts are made as shown in figure (IV). Which one of the following patterns will be obtained when the paper is unfolded?
In the diagram, the lines QR and ST are parallel to each other. The shortest distance between these two lines is half the shortest distance between the point P and the line QR. What is the ratio of the area of the triangle PST to the area of the trapezium SQRT?
Note: The figure shown is representative