The materials can be categorized as conductors, insulators, and semiconductors based on their conductivity values at 298.15 K.
Conductors generally have conductivities on the order of \(10^2\) to \(10^6 \, \text{S m}^{-1}\).
Insulators have very low conductivities, typically around \(10^{-10}\) to \(10^{-8} \, \text{S m}^{-1}\).
Semiconductors have conductivities ranging from \(10^{-4}\) to \(10 \, \text{S m}^{-1}\).
Given values:
\[ 2.1 \times 10^3, \, 1.2 \times 10^3, \, 3.91, \, 1.5 \times 10^{-2}, \, 1 \times 10^{-7}, \, 1.0 \times 10^3 \]
Classifying each:
Therefore, the number of conductors is: 4.
Concentration of KCl solution (mol/L) | Conductivity at 298.15 K (S cm-1) | Molar Conductivity at 298.15 K (S cm2 mol-1) |
---|---|---|
1.000 | 0.1113 | 111.3 |
0.100 | 0.0129 | 129.0 |
0.010 | 0.00141 | 141.0 |
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: