The materials can be categorized as conductors, insulators, and semiconductors based on their conductivity values at 298.15 K.
Conductors generally have conductivities on the order of \(10^2\) to \(10^6 \, \text{S m}^{-1}\).
Insulators have very low conductivities, typically around \(10^{-10}\) to \(10^{-8} \, \text{S m}^{-1}\).
Semiconductors have conductivities ranging from \(10^{-4}\) to \(10 \, \text{S m}^{-1}\).
Given values:
\[ 2.1 \times 10^3, \, 1.2 \times 10^3, \, 3.91, \, 1.5 \times 10^{-2}, \, 1 \times 10^{-7}, \, 1.0 \times 10^3 \]
Classifying each:
Therefore, the number of conductors is: 4.
For the given cell: \[ {Fe}^{2+}(aq) + {Ag}^+(aq) \to {Fe}^{3+}(aq) + {Ag}(s) \] The standard cell potential of the above reaction is given. The standard reduction potentials are given as: \[ {Ag}^+ + e^- \to {Ag} \quad E^\circ = x \, {V} \] \[ {Fe}^{2+} + 2e^- \to {Fe} \quad E^\circ = y \, {V} \] \[ {Fe}^{3+} + 3e^- \to {Fe} \quad E^\circ = z \, {V} \] The correct answer is: