The values of a function \( f \) obtained for different values of \( x \) are shown in the table below.
Using Simpson’s one-third rule, approximate the integral \[ \int_0^1 f(x) \, dx \quad \text{(rounded off to 2 decimal places)}. \]
The table below gives the values of \( f(x) \) at five equidistant points of \( x \):
x | 0 | 0.5 | 1.0 | 1.5 | 2.0 |
---|---|---|---|---|---|
f(x) | 0 | 0.25 | 1.0 | 2.25 | 4.0 |
Then the approximate value of \( \int_0^2 f(x) \, dx \) by Trapezoidal Rule is:
The table below gives values of the function \( f(x) = \frac{1}{x} \) at 5 points of \( x \).} \[ \begin{array}{|c|c|c|c|c|c|} \hline x & 1 & 1.25 & 1.5 & 1.75 & 2 \\ \hline f(x) & 1 & 0.8 & 0.6667 & 0.57143 & 0.5 \\ \hline \end{array} \] The approximate value of \( \int_1^2 \frac{1}{x} \, dx \) using Simpson’s \( \left( \frac{1}{3} \right) \)rd rule is:
Fish : Shoal :: Lion : _________
Select the correct option to complete the analogy.
The given figure is reflected about the horizontal dashed line and then rotated clockwise by 90° about an axis perpendicular to the plane of the figure.
Which one of the following options correctly shows the resultant figure?
Note: The figures shown are representative
Identify the option that has the most appropriate sequence such that a coherent paragraph is formed:
Statement:
P. At once, without thinking much, people rushed towards the city in hordes with the sole aim of grabbing as much gold as they could.
Q. However, little did they realize about the impending hardships they would have to face on their way to the city: miles of mud, unfriendly forests, hungry beasts, and inimical local lords—all of which would reduce their chances of getting gold to almost zero.
R. All of them thought that easily they could lay their hands on gold and become wealthy overnight.
S. About a hundred years ago, the news that gold had been discovered in Kolar spread like wildfire and the whole State was in raptures.