Given:
\(\sin \left( 2 \tan^{-1} \frac{3}{4} \right) = \cos \left( 2 \tan^{-1} x \right)\)
We know that \(\sin(2\theta) = 2\sin(\theta)\cos(\theta)\) and \(\cos(2\theta) = 1 - 2\sin^2(\theta)\).
First, let's find \(\sin \left( 2 \tan^{-1} \frac{3}{4} \right)\):
Let \(\theta = \tan^{-1} \frac{3}{4}\), then \(\tan \theta = \frac{3}{4}\), which implies that the opposite side is 3 and the adjacent side is 4 in a right triangle. Using the Pythagorean theorem, the hypotenuse is \(\sqrt{3^2 + 4^2} = 5\).
Thus, \(\sin \theta = \frac{3}{5}\) and \(\cos \theta = \frac{4}{5}\).
\(\sin \left( 2\tan^{-1} \frac{3}{4} \right) = 2\sin \theta\cos \theta = 2 \times \frac{3}{5} \times \frac{4}{5} = \frac{24}{25}\).
Now, set the equation:
\(\frac{24}{25} = \cos \left( 2\tan^{-1} x \right)\)
Use the formula \(\cos(2\theta) = 1 - 2\sin^2(\theta)\) where \(\theta = \tan^{-1} x\).
\(1 - 2\sin^2(\tan^{-1} x) = \frac{24}{25}\)
\(2\sin^2(\tan^{-1} x) = 1 - \frac{24}{25} = \frac{1}{25}\)
\(\sin^2(\tan^{-1} x) = \frac{1}{50}\)
Now, \(\sin(\tan^{-1} x) = \frac{x}{\sqrt{1+x^2}}\)
Substitute: \(\left(\frac{x}{\sqrt{1+x^2}}\right)^2 = \frac{1}{50}\)
\(\frac{x^2}{1+x^2} = \frac{1}{50}\)
Cross-multiply:
\(50x^2 = 1+x^2\)
\(49x^2 = 1\)
\(x^2 = \frac{1}{49}\)
\(x = \frac{1}{7}\) (since \(x\) is positive)
Therefore, the value of \(x\) is \(\frac{1}{7}\).