Question:

The value of \( x \) such that \( \sin \left( 2 \tan^{-1} \frac{3}{4} \right) = \cos \left( 2 \tan^{-1} x \right) \) is:

Show Hint

For equations involving inverse trigonometric functions, use standard trigonometric identities to simplify the expressions and solve for the unknown.
Updated On: Mar 24, 2025
  • \( 7 \)
  • \( \) (Blank)
  • \( \frac{1}{7} \)
  • \( \frac{4}{7} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Expressing \( \sin (2\tan^{-1} \theta) \) and \( \cos (2\tan^{-1} \theta) \) Using standard trigonometric identities: \[ \sin (2\tan^{-1} \theta) = \frac{2\theta}{1+\theta^2}, \quad \cos (2\tan^{-1} \theta) = \frac{1-\theta^2}{1+\theta^2}. \]
Step 2: Computing \( \sin(2\tan^{-1} \frac{3}{4}) \) Substituting \( \theta = \frac{3}{4} \): \[ \sin \left( 2 \tan^{-1} \frac{3}{4} \right) = \frac{2 \times \frac{3}{4}}{1 + \left( \frac{3}{4} \right)^2} \] \[ = \frac{\frac{6}{4}}{1 + \frac{9}{16}} \] \[ = \frac{\frac{6}{4}}{\frac{25}{16}} = \frac{6}{4} \times \frac{16}{25} = \frac{96}{100} = \frac{24}{25}. \]
Step 3: Equating with \( \cos(2\tan^{-1} x) \) and Solving for \( x \) Since, \[ \cos(2\tan^{-1} x) = \frac{1-x^2}{1+x^2}, \] we equate: \[ \frac{1 - x^2}{1 + x^2} = \frac{24}{25}. \] Cross multiplying: \[ (1 - x^2) \times 25 = (1 + x^2) \times 24. \] \[ 25 - 25x^2 = 24 + 24x^2. \] \[ 25 - 24 = 25x^2 + 24x^2. \] \[ 1 = 49x^2. \] \[ x^2 = \frac{1}{49}. \] \[ x = \frac{1}{7}. \]
Step 4: Verifying the Correct Option Comparing with the given options, we find: \[ \boxed{\frac{1}{7}}. \] Thus, the correct answer is Option (3).
Was this answer helpful?
0
0