Step 1: Expressing \( \sin (2\tan^{-1} \theta) \) and \( \cos (2\tan^{-1} \theta) \)
Using standard trigonometric identities:
\[
\sin (2\tan^{-1} \theta) = \frac{2\theta}{1+\theta^2}, \quad \cos (2\tan^{-1} \theta) = \frac{1-\theta^2}{1+\theta^2}.
\]
Step 2: Computing \( \sin(2\tan^{-1} \frac{3}{4}) \)
Substituting \( \theta = \frac{3}{4} \):
\[
\sin \left( 2 \tan^{-1} \frac{3}{4} \right) = \frac{2 \times \frac{3}{4}}{1 + \left( \frac{3}{4} \right)^2}
\]
\[
= \frac{\frac{6}{4}}{1 + \frac{9}{16}}
\]
\[
= \frac{\frac{6}{4}}{\frac{25}{16}} = \frac{6}{4} \times \frac{16}{25} = \frac{96}{100} = \frac{24}{25}.
\]
Step 3: Equating with \( \cos(2\tan^{-1} x) \) and Solving for \( x \)
Since,
\[
\cos(2\tan^{-1} x) = \frac{1-x^2}{1+x^2},
\]
we equate:
\[
\frac{1 - x^2}{1 + x^2} = \frac{24}{25}.
\]
Cross multiplying:
\[
(1 - x^2) \times 25 = (1 + x^2) \times 24.
\]
\[
25 - 25x^2 = 24 + 24x^2.
\]
\[
25 - 24 = 25x^2 + 24x^2.
\]
\[
1 = 49x^2.
\]
\[
x^2 = \frac{1}{49}.
\]
\[
x = \frac{1}{7}.
\]
Step 4: Verifying the Correct Option
Comparing with the given options, we find:
\[
\boxed{\frac{1}{7}}.
\]
Thus, the correct answer is Option (3).