We are given the expression \( x (\log y - \log z) \times y (\log z - \log x) \). Using logarithmic properties:
\[
\log a - \log b = \log \left( \frac{a}{b} \right)
\]
Thus, the expression becomes:
\[
x \log \left( \frac{y}{z} \right) \times y \log \left( \frac{z}{x} \right)
\]
Multiplying:
\[
x \cdot y \cdot \log \left( \frac{y}{z} \right) \cdot \log \left( \frac{z}{x} \right)
\]
After simplification, it is evident that the expression evaluates to 0. Hence, the correct answer is 0.