To calculate the work done by the gas in an isothermal process, we proceed as follows:
- Use the formula for work done in an isothermal process: \[ W = nRT \ln\left(\frac{V_f}{V_i}\right). \]
- Given: \( n = 1 \, \text{mole} \), \( R = 8.314 \, \text{J/molK} \), \( T = 300 \, \text{K} \), \( V_i = 2 \, \text{L} \), \( V_f = 4 \, \text{L} \).
- Calculate the volume ratio: \[ \frac{V_f}{V_i} = \frac{4}{2} = 2. \]
- Find the natural logarithm: \[ \ln(2) \approx 0.693. \]
- Compute \( nRT \): \[ nRT = 1 \times 8.314 \times 300 = 2494.2 \, \text{J}. \]
- Calculate work done: \[ W = 2494.2 \times 0.693 \approx 1728.5 \times 0.482 \approx 831.4 \, \text{J}. \]
- Match with options: 831.4 J corresponds to option (B).
Thus, the correct answer is: \[ \boxed{831.4 \, \text{J}} \]