Consider two statements:
Statement 1: $ \lim_{x \to 0} \frac{\tan^{-1} x + \ln \left( \frac{1+x}{1-x} \right) - 2x}{x^5} = \frac{2}{5} $
Statement 2: $ \lim_{x \to 1} x \left( \frac{2}{1-x} \right) = e^2 \; \text{and can be solved by the method} \lim_{x \to 1} \frac{f(x)}{g(x) - 1} $
If \( 2 \) is a solution of the inequality \( \frac{x-a}{a-2x}<-3 \), then \( a \) must lie in the interval:
A function's limit is a number that a function reaches when its independent variable comes to a certain value. The value (say a) to which the function f(x) approaches casually as the independent variable x approaches casually a given value "A" denoted as f(x) = A.
If limx→a- f(x) is the expected value of f when x = a, given the values of ‘f’ near x to the left of ‘a’. This value is also called the left-hand limit of ‘f’ at a.
If limx→a+ f(x) is the expected value of f when x = a, given the values of ‘f’ near x to the right of ‘a’. This value is also called the right-hand limit of f(x) at a.
If the right-hand and left-hand limits concur, then it is referred to as a common value as the limit of f(x) at x = a and denote it by lim x→a f(x).