Step 1: Express the region in cylindrical coordinates.
\[ x = r\cos\theta, \, y = r\sin\theta, \, z = z, 0 \le r \le 1, \, 0 \le \theta \le 2\pi, \, 0 \le z \le 2. \] \[ x^2y + 1 = r^2\cos^2\theta (r\sin\theta) + 1 = r^3\cos^2\theta\sin\theta + 1. \]
Step 2: Write the integral.
\[ \iiint_V (x^2y + 1) \, dV = \int_0^{2\pi} \int_0^1 \int_0^2 (r^3\cos^2\theta\sin\theta + 1)r \, dz\,dr\,d\theta. \]
Step 3: Integrate with respect to \( z \).
\[ = \int_0^{2\pi} \int_0^1 [2r^4\cos^2\theta\sin\theta + 2r] \, dr\,d\theta. \] The first term integrates to zero because \( \int_0^{2\pi}\cos^2\theta\sin\theta \, d\theta = 0. \) \[ \Rightarrow \int_0^{2\pi}\int_0^1 2r\, dr\, d\theta = 2\pi. \]
Final Answer: \( 2\pi. \)