To solve the given limit, we first analyze the expression:
\[
\lim_{x \to 0} \left( \frac{1^x + 2^x + 3^x + 4^x}{4} \right)^{\frac{1}{x}}.
\]
For small values of \( x \), we can use the approximation \( a^x \approx 1 + x \ln(a) \) when \( x \) is close to 0. Applying this to each term:
\[
1^x \approx 1, \quad 2^x \approx 1 + x \ln(2), \quad 3^x \approx 1 + x \ln(3), \quad 4^x \approx 1 + x \ln(4).
\]
Thus, the numerator becomes:
\[
1 + (1 + x \ln(2)) + (1 + x \ln(3)) + (1 + x \ln(4)) = 4 + x(\ln(2) + \ln(3) + \ln(4)).
\]
Now the limit expression is:
\[
\lim_{x \to 0} \left( \frac{4 + x (\ln(2) + \ln(3) + \ln(4))}{4} \right)^{\frac{1}{x}}.
\]
Simplifying the fraction:
\[
= \lim_{x \to 0} \left( 1 + \frac{x (\ln(2) + \ln(3) + \ln(4))}{4} \right)^{\frac{1}{x}}.
\]
Using the approximation \( (1 + u)^n \approx e^{nu} \) for small \( u \), we get:
\[
\lim_{x \to 0} \exp \left( \frac{(\ln(2) + \ln(3) + \ln(4))}{4} \right) = \exp \left( \frac{\ln(24)}{4} \right).
\]
This simplifies to:
\[
\exp \left( \frac{\ln(24)}{4} \right) = 24^{1/4}.
\]
Thus, the correct answer is \( 4^{1/4} \).