The problem asks to evaluate the limit:
$$L = \lim_{n \to \infty} \left( \underbrace{\frac{1^4 + 2^4 + \dots + n^4}{n^5}}_{L_1} + \underbrace{\frac{1}{\sqrt{n}} \left( \frac{1}{\sqrt{n+1}} + \frac{1}{\sqrt{n+2}} + \dots + \frac{1}{\sqrt{4n}} \right)}_{L_2} \right)$$
We will solve this by splitting it into two parts, $L_1$ and $L_2$, evaluating them separately using the concept of Definite Integral as the Limit of a Sum.
The general formula used is:
$$\lim_{n \to \infty} \frac{1}{n} \sum_{r=a}^{bn} f\left(\frac{r}{n}\right) = \int_{a/n}^{bn/n} f(x) \, dx$$
Part 1: Evaluate $L_1$
$$L_1 = \lim_{n \to \infty} \frac{1^4 + 2^4 + \dots + n^4}{n^5}$$
Rewrite the sum using sigma notation:
$$L_1 = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{r^4}{n^5}$$
Separate $\frac{1}{n}$ to form the Riemann sum structure:
$$L_1 = \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} \left(\frac{r}{n}\right)^4$$
Here, $f(x) = x^4$. The lower limit is $\frac{r}{n} \to 0$ (as $r=1, n \to \infty$) and the upper limit is $\frac{r}{n} \to 1$ (as $r=n$).
$$L_1 = \int_{0}^{1} x^4 \, dx$$
Now, integrate:
$$L_1 = \left[ \frac{x^5}{5} \right]_0^1 = \frac{1}{5} - 0 = 0.2$$
So, $L_1 = 0.2$
Part 2: Evaluate $L_2$
$$L_2 = \lim_{n \to \infty} \frac{1}{\sqrt{n}} \left( \frac{1}{\sqrt{n+1}} + \frac{1}{\sqrt{n+2}} + \dots + \frac{1}{\sqrt{4n}} \right)$$
Rewrite the series in sigma notation. Note that the last term is $\frac{1}{\sqrt{4n}}$, which can be written as $\frac{1}{\sqrt{n+3n}}$. This means the summation index $r$ goes from $1$ to $3n$.
$$L_2 = \lim_{n \to \infty} \frac{1}{\sqrt{n}} \sum_{r=1}^{3n} \frac{1}{\sqrt{n+r}}$$
Factor out $\sqrt{n}$ from the denominator inside the summation to match the Riemann sum form:
$$L_2 = \lim_{n \to \infty} \frac{1}{\sqrt{n}} \sum_{r=1}^{3n} \frac{1}{\sqrt{n\left(1+\frac{r}{n}\right)}}$$
$$L_2 = \lim_{n \to \infty} \frac{1}{\sqrt{n}} \sum_{r=1}^{3n} \frac{1}{\sqrt{n}\sqrt{1+\frac{r}{n}}}$$
Combine the $\frac{1}{\sqrt{n}}$ terms outside and inside the sum:
$$L_2 = \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{3n} \frac{1}{\sqrt{1+\frac{r}{n}}}$$
Identify the integral components:
Function: $f(x) = \frac{1}{\sqrt{1+x}}$
Lower Limit: As $r=1$ and $n \to \infty$, $\frac{r}{n} \to 0$.
Upper Limit: As $r=3n$, $\frac{r}{n} = \frac{3n}{n} \to 3$.
So, the integral is:
$$L_2 = \int_{0}^{3} \frac{1}{\sqrt{1+x}} \, dx = \int_{0}^{3} (1+x)^{-1/2} \, dx$$
Now, integrate:
$$L_2 = \left[ \frac{(1+x)^{1/2}}{1/2} \right]_0^3$$
$$L_2 = 2 \left[ \sqrt{1+x} \right]_0^3$$
$$L_2 = 2 \left( \sqrt{1+3} - \sqrt{1+0} \right)$$
$$L_2 = 2 (\sqrt{4} - \sqrt{1})$$
$$L_2 = 2 (2 - 1) = 2(1) = 2$$
So, $L_2 = 2$
Final Calculation
The total limit $L$ is the sum of the two parts:
$$L = L_1 + L_2$$
$$L = 0.2 + 2$$
$$L = 2.2$$
Rounding off to two decimal places:
Answer = 2.20