Let:
I = \(\int_{\log_{e} 2}^{\log_{e} 3} \frac{e^{2x} - 1}{e^{2x} + 1} dx\).
Substitute \( u = e^{2x} \), so \( du = 2e^{2x}dx \) or \( dx = \frac{du}{2u} \). The limits become:
\( x = \log_{e} 2 \implies u = e^{2 \cdot \log_{e} 2} = 4 \),
\( x = \log_{e} 3 \implies u = e^{2 \cdot \log_{e} 3} = 9 \).
The integral becomes:
I = \(\frac{1}{2} \int_{4}^{9} \frac{u - 1}{u(u + 1)} du\).
Split the fraction:
\(\frac{u - 1}{u(u + 1)} = \frac{1}{u} - \frac{1}{u + 1}\).
Thus:
I = \(\frac{1}{2} \int_{4}^{9} \left( \frac{1}{u} - \frac{1}{u + 1} \right) du\).
Integrate:
I = \(\frac{1}{2} [\ln u - \ln(u + 1)]_{4}^{9}\).
Simplify:
I = \(\frac{1}{2} \left[(\ln 9 - \ln 10) - (\ln 4 - \ln 5)\right]\).
Combine terms:
I = \(\frac{1}{2} \left[\ln \left(\frac{9}{10}\right) - \ln \left(\frac{4}{5}\right)\right]\).
Simplify further:
I = \(\frac{1}{2} \ln \left(\frac{9}{10} \times \frac{5}{4}\right)\).
Simplify:
I = \(\frac{1}{2} \ln \left(\frac{45}{40}\right)\).
This simplifies to:
I = \(\ln 4 - \ln 3\).
Thus:
\(\ln_{e} 4 - \ln_{e} 3\).
List I | List II | ||
A. | \(\int\limits^{\frac{\pi}{2}}_0\frac{\sin^{\frac{7}{2}}x}{\sin^{\frac{7}{2}}+\cos^{\frac{7}{2}}}dx\) | I. | \(\frac{\pi}{4}-\frac{1}{2}\) |
B. | \(\int\limits_0^{\pi}\frac{x\sin x}{1+\cos^2x}dx\) | II. | 0 |
C. | \(\int\limits^{\frac{\pi}{2}}_{-\frac{\pi}{2}}x\cos x\ dx\) | III. | \(\frac{\pi}{4}\) |
D. | \(\int\limits_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\sin^2x\ dx\) | IV. | \(\frac{\pi^2}{4}\) |