When solving integrals that involve exponential functions, substitution can be a powerful technique. In this case, using \( u = e^{2x} \) simplified the problem significantly. Additionally, remember to split fractions into simpler terms when possible, as it often makes integration easier. Always check for opportunities to simplify logarithmic expressions, as they can lead to more concise results.
Let:
I = \(\int_{\log_{e} 2}^{\log_{e} 3} \frac{e^{2x} - 1}{e^{2x} + 1} dx\).
Substitute \( u = e^{2x} \), so \( du = 2e^{2x}dx \) or \( dx = \frac{du}{2u} \). The limits become:
\( x = \log_{e} 2 \implies u = e^{2 \cdot \log_{e} 2} = 4 \),
\( x = \log_{e} 3 \implies u = e^{2 \cdot \log_{e} 3} = 9 \).
The integral becomes:
I = \(\frac{1}{2} \int_{4}^{9} \frac{u - 1}{u(u + 1)} du\).
Split the fraction:
\(\frac{u - 1}{u(u + 1)} = \frac{1}{u} - \frac{1}{u + 1}\).
Thus:
I = \(\frac{1}{2} \int_{4}^{9} \left( \frac{1}{u} - \frac{1}{u + 1} \right) du\).
Integrate:
I = \(\frac{1}{2} [\ln u - \ln(u + 1)]_{4}^{9}\).
Simplify:
I = \(\frac{1}{2} \left[(\ln 9 - \ln 10) - (\ln 4 - \ln 5)\right]\).
Combine terms:
I = \(\frac{1}{2} \left[\ln \left(\frac{9}{10}\right) - \ln \left(\frac{4}{5}\right)\right]\).
Simplify further:
I = \(\frac{1}{2} \ln \left(\frac{9}{10} \times \frac{5}{4}\right)\).
Simplify:
I = \(\frac{1}{2} \ln \left(\frac{45}{40}\right)\).
This simplifies to:
I = \(\ln 4 - \ln 3\).
Thus:
\(\ln_{e} 4 - \ln_{e} 3\).
Given:
\( I = \int_{\log_{e} 2}^{\log_{e} 3} \frac{e^{2x} - 1}{e^{2x} + 1} dx \).
Step 1: Substitution
Let \( u = e^{2x} \), so \( du = 2e^{2x}dx \) or \( dx = \frac{du}{2u} \). The limits of integration change as follows: - When \( x = \log_e 2 \), we have \( u = e^{2 \cdot \log_e 2} = 4 \). - When \( x = \log_e 3 \), we have \( u = e^{2 \cdot \log_e 3} = 9 \).Step 2: Rewrite the integral
The integral becomes: \[ I = \frac{1}{2} \int_{4}^{9} \frac{u - 1}{u(u + 1)} du. \]Step 3: Split the fraction
We split the fraction into two simpler terms: \[ \frac{u - 1}{u(u + 1)} = \frac{1}{u} - \frac{1}{u + 1}. \] Thus, the integral becomes: \[ I = \frac{1}{2} \int_{4}^{9} \left( \frac{1}{u} - \frac{1}{u + 1} \right) du. \]Step 4: Integrate
Now, we integrate each term: \[ I = \frac{1}{2} \left[ \ln u - \ln(u + 1) \right]_{4}^{9}. \]Step 5: Evaluate the definite integral
Substitute the limits of integration: \[ I = \frac{1}{2} \left[ (\ln 9 - \ln 10) - (\ln 4 - \ln 5) \right]. \]Step 6: Combine the logarithmic terms
\[ I = \frac{1}{2} \left[ \ln \left( \frac{9}{10} \right) - \ln \left( \frac{4}{5} \right) \right]. \]Step 7: Simplify further
\[ I = \frac{1}{2} \ln \left( \frac{9}{10} \times \frac{5}{4} \right). \] Simplifying: \[ I = \frac{1}{2} \ln \left( \frac{45}{40} \right). \]Step 8: Final simplification
Simplifying the fraction: \[ I = \ln 4 - \ln 3. \]Conclusion:
Thus, the final result is: \[ \ln_{e} 4 - \ln_{e} 3. \]List I | List II | ||
A. | \(\int\limits^{\frac{\pi}{2}}_0\frac{\sin^{\frac{7}{2}}x}{\sin^{\frac{7}{2}}+\cos^{\frac{7}{2}}}dx\) | I. | \(\frac{\pi}{4}-\frac{1}{2}\) |
B. | \(\int\limits_0^{\pi}\frac{x\sin x}{1+\cos^2x}dx\) | II. | 0 |
C. | \(\int\limits^{\frac{\pi}{2}}_{-\frac{\pi}{2}}x\cos x\ dx\) | III. | \(\frac{\pi}{4}\) |
D. | \(\int\limits_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\sin^2x\ dx\) | IV. | \(\frac{\pi^2}{4}\) |