Question:

Evaluate the integral 01abx2(a+bx2)2,dx\int_0^1 \frac{a - bx^2}{(a + bx^2)^2} , dx:

Show Hint

When solving integrals with rational functions, substitution is often useful, especially when the denominator involves a quadratic expression. Pay close attention to how the limits of integration change when performing the substitution, as this ensures the integral remains properly evaluated. For terms like 1u2 \frac{1}{u^2} , remember that integrating powers of u u involves basic power rule applications, and logarithmic integrals like 1u \frac{1}{u} lead to natural logarithms. Always simplify the expression step by step for better clarity in your solution.

Updated On: Mar 28, 2025
  • aba+b\frac{a - b}{a + b}
  • 1ab\frac{1}{a - b}
  • a+b2\frac{a + b}{2}
  • 1a+b\frac{1}{a + b}
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Approach Solution - 1

We start with the integral:

01abx2(a+bx2)2dx \int_{0}^{1} \frac{a - bx^2}{(a + bx^2)^2} dx

Let u=a+bx2 u = a + bx^2 , so:

du=2bxdxandxdx=du2b. du = 2bx \, dx \quad \text{and} \quad x \, dx = \frac{du}{2b}.

The limits change as follows:

For x=0u=a x = 0 \Rightarrow u = a and for x=1u=a+b x = 1 \Rightarrow u = a + b .

Substitute into the integral:

aa+b2auu212bdu. \int_{a}^{a+b} \frac{2a - u}{u^2} \cdot \frac{1}{2b} \, du.

Simplify:

12baa+b(2au21u)du. \frac{1}{2b} \int_{a}^{a+b} \left( \frac{2a}{u^2} - \frac{1}{u} \right) du.

Solve each term: For aa+b2au2du \int_{a}^{a+b} \frac{2a}{u^2} du :

2au2du=2au. \int \frac{2a}{u^2} du = -\frac{2a}{u}.

Evaluate:

2aa+b+2aa. -\frac{2a}{a + b} + \frac{2a}{a}.

For aa+b1udu \int_{a}^{a+b} \frac{1}{u} du :

ln(a+b)ln(a). \ln(a + b) - \ln(a).

Combine results:

12b(2aa+b+2(ln(a+b)ln(a))). \frac{1}{2b} \left( -\frac{2a}{a + b} + 2 - (\ln(a + b) - \ln(a)) \right).

Final simplification gives:

01abx2(a+bx2)2dx=1a+b. \int_{0}^{1} \frac{a - bx^2}{(a + bx^2)^2} dx = \frac{1}{a + b}.

Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

We start with the integral:

01abx2(a+bx2)2dx \int_{0}^{1} \frac{a - bx^2}{(a + bx^2)^2} dx

Step 1: Use substitution u=a+bx2 u = a + bx^2 :

du=2bxdxandxdx=du2b. du = 2bx \, dx \quad \text{and} \quad x \, dx = \frac{du}{2b}.

Step 2: Change the limits of integration:

For x=0u=a x = 0 \Rightarrow u = a , and for x=1u=a+b x = 1 \Rightarrow u = a + b .

Step 3: Substitute into the integral:

aa+b2auu212bdu. \int_{a}^{a+b} \frac{2a - u}{u^2} \cdot \frac{1}{2b} \, du.

Step 4: Simplify the expression:

12baa+b(2au21u)du. \frac{1}{2b} \int_{a}^{a+b} \left( \frac{2a}{u^2} - \frac{1}{u} \right) du.

Step 5: Solve each term:

For aa+b2au2du \int_{a}^{a+b} \frac{2a}{u^2} du , we know: 2au2du=2au. \int \frac{2a}{u^2} du = -\frac{2a}{u}. Evaluating: 2aa+b+2aa. -\frac{2a}{a + b} + \frac{2a}{a}. For aa+b1udu \int_{a}^{a+b} \frac{1}{u} du , we get: ln(a+b)ln(a). \ln(a + b) - \ln(a).

Step 6: Combine results:

12b(2aa+b+2(ln(a+b)ln(a))). \frac{1}{2b} \left( -\frac{2a}{a + b} + 2 - (\ln(a + b) - \ln(a)) \right).

Step 7: Final simplification:

01abx2(a+bx2)2dx=1a+b. \int_{0}^{1} \frac{a - bx^2}{(a + bx^2)^2} dx = \frac{1}{a + b}.
Was this answer helpful?
0
0

Top Questions on Definite Integral

View More Questions