We start with the integral:
\[ \int_{0}^{1} \frac{a - bx^2}{(a + bx^2)^2} dx \]
Let \( u = a + bx^2 \), so:
\[ du = 2bx \, dx \quad \text{and} \quad x \, dx = \frac{du}{2b}. \]
The limits change as follows:
For \( x = 0 \Rightarrow u = a \) and for \( x = 1 \Rightarrow u = a + b \).
Substitute into the integral:
\[ \int_{a}^{a+b} \frac{2a - u}{u^2} \cdot \frac{1}{2b} \, du. \]
Simplify:
\[ \frac{1}{2b} \int_{a}^{a+b} \left( \frac{2a}{u^2} - \frac{1}{u} \right) du. \]
Solve each term: For \( \int_{a}^{a+b} \frac{2a}{u^2} du \):
\[ \int \frac{2a}{u^2} du = -\frac{2a}{u}. \]
Evaluate:
\[ -\frac{2a}{a + b} + \frac{2a}{a}. \]
For \( \int_{a}^{a+b} \frac{1}{u} du \):
\[ \ln(a + b) - \ln(a). \]
Combine results:
\[ \frac{1}{2b} \left( -\frac{2a}{a + b} + 2 - (\ln(a + b) - \ln(a)) \right). \]
Final simplification gives:
\[ \int_{0}^{1} \frac{a - bx^2}{(a + bx^2)^2} dx = \frac{1}{a + b}. \]
List I | List II | ||
A. | \(\int\limits^{\frac{\pi}{2}}_0\frac{\sin^{\frac{7}{2}}x}{\sin^{\frac{7}{2}}+\cos^{\frac{7}{2}}}dx\) | I. | \(\frac{\pi}{4}-\frac{1}{2}\) |
B. | \(\int\limits_0^{\pi}\frac{x\sin x}{1+\cos^2x}dx\) | II. | 0 |
C. | \(\int\limits^{\frac{\pi}{2}}_{-\frac{\pi}{2}}x\cos x\ dx\) | III. | \(\frac{\pi}{4}\) |
D. | \(\int\limits_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\sin^2x\ dx\) | IV. | \(\frac{\pi^2}{4}\) |