When solving integrals with rational functions, substitution is often useful, especially when the denominator involves a quadratic expression. Pay close attention to how the limits of integration change when performing the substitution, as this ensures the integral remains properly evaluated. For terms like \( \frac{1}{u^2} \), remember that integrating powers of \( u \) involves basic power rule applications, and logarithmic integrals like \( \frac{1}{u} \) lead to natural logarithms. Always simplify the expression step by step for better clarity in your solution.
We start with the integral:
\[ \int_{0}^{1} \frac{a - bx^2}{(a + bx^2)^2} dx \]
Let \( u = a + bx^2 \), so:
\[ du = 2bx \, dx \quad \text{and} \quad x \, dx = \frac{du}{2b}. \]
The limits change as follows:
For \( x = 0 \Rightarrow u = a \) and for \( x = 1 \Rightarrow u = a + b \).
Substitute into the integral:
\[ \int_{a}^{a+b} \frac{2a - u}{u^2} \cdot \frac{1}{2b} \, du. \]
Simplify:
\[ \frac{1}{2b} \int_{a}^{a+b} \left( \frac{2a}{u^2} - \frac{1}{u} \right) du. \]
Solve each term: For \( \int_{a}^{a+b} \frac{2a}{u^2} du \):
\[ \int \frac{2a}{u^2} du = -\frac{2a}{u}. \]
Evaluate:
\[ -\frac{2a}{a + b} + \frac{2a}{a}. \]
For \( \int_{a}^{a+b} \frac{1}{u} du \):
\[ \ln(a + b) - \ln(a). \]
Combine results:
\[ \frac{1}{2b} \left( -\frac{2a}{a + b} + 2 - (\ln(a + b) - \ln(a)) \right). \]
Final simplification gives:
\[ \int_{0}^{1} \frac{a - bx^2}{(a + bx^2)^2} dx = \frac{1}{a + b}. \]
We start with the integral:
\[ \int_{0}^{1} \frac{a - bx^2}{(a + bx^2)^2} dx \]
Step 1: Use substitution \( u = a + bx^2 \):
\[ du = 2bx \, dx \quad \text{and} \quad x \, dx = \frac{du}{2b}. \]
Step 2: Change the limits of integration:
For \( x = 0 \Rightarrow u = a \), and for \( x = 1 \Rightarrow u = a + b \).
Step 3: Substitute into the integral:
\[ \int_{a}^{a+b} \frac{2a - u}{u^2} \cdot \frac{1}{2b} \, du. \]
Step 4: Simplify the expression:
\[ \frac{1}{2b} \int_{a}^{a+b} \left( \frac{2a}{u^2} - \frac{1}{u} \right) du. \]
Step 5: Solve each term:
For \( \int_{a}^{a+b} \frac{2a}{u^2} du \), we know: \[ \int \frac{2a}{u^2} du = -\frac{2a}{u}. \] Evaluating: \[ -\frac{2a}{a + b} + \frac{2a}{a}. \] For \( \int_{a}^{a+b} \frac{1}{u} du \), we get: \[ \ln(a + b) - \ln(a). \]
Step 6: Combine results:
\[ \frac{1}{2b} \left( -\frac{2a}{a + b} + 2 - (\ln(a + b) - \ln(a)) \right). \]
Step 7: Final simplification:
\[ \int_{0}^{1} \frac{a - bx^2}{(a + bx^2)^2} dx = \frac{1}{a + b}. \]
What comes next in the series?
\(2, 6, 12, 20, 30, \ ?\)