To evaluate the integral \(\int\limits_{-3}^2 x^2 |2x| \,dx\), we first consider the behavior of the absolute value function \(|2x|\).
The absolute value function is defined as:
\[
|2x| =
\begin{cases}
2x, & x \geq 0 \\
-2x, & x < 0
\end{cases}
\]
Since the function changes at \(x = 0\), we split the integral at 0:
\[
\int\limits_{-3}^{2} x^2 |2x| \,dx = \int\limits_{-3}^{0} x^2 (-2x) \,dx + \int\limits_{0}^{2} x^2 (2x) \,dx
\]
1. For the first part:
\[
\int\limits_{-3}^0 x^2 (-2x) \,dx = -2 \int\limits_{-3}^0 x^3 \,dx
\]
- The antiderivative of \(x^3\) is \(\dfrac{x^4}{4}\)
\[
-2 \left[ \frac{x^4}{4} \right]_{-3}^0 = -2 \left( \frac{0^4}{4} - \frac{(-3)^4}{4} \right)
= -2 \left( 0 - \frac{81}{4} \right) = \frac{162}{4} = \frac{81}{2}
\]
2. For the second part:
\[
\int\limits_0^2 x^2 (2x) \,dx = 2 \int\limits_0^2 x^3 \,dx
\]
- The antiderivative of \(x^3\) is again \(\dfrac{x^4}{4}\)
\[
2 \left[ \frac{x^4}{4} \right]_0^2 = 2 \left( \frac{2^4}{4} - \frac{0^4}{4} \right)
= 2 \left( \frac{16}{4} \right) = 2 \times 4 = 8
\]
3. Add both parts:
\[
\frac{81}{2} + 8 = \frac{81}{2} + \frac{16}{2} = \frac{97}{2}
\]
\[
\boxed{\frac{97}{2}}
\]