The given integral is:
\[I = \int_{0}^{\frac{\pi}{2}} \frac{1 - \cot x}{\csc x + \cos x} dx.\]
Analyze the symmetry of the integral. The limits of the integral are symmetric about \(\frac{\pi}{4}\), and the integrand contains terms that involve trigonometric functions \(\sin x\), \(\cos x\), \(\cot x\), and \(\csc x\). Specifically, consider the property:
\[f(x) = -f\left(\frac{\pi}{2} - x\right).\]
For the integrand:
\[f(x) = \frac{1 - \cot x}{\csc x + \cos x}.\]
Using the trigonometric substitutions:
\[\cot\left(\frac{\pi}{2} - x\right) = \tan x, \quad \csc\left(\frac{\pi}{2} - x\right) = \sec x, \quad \cos\left(\frac{\pi}{2} - x\right) = \sin x,\]
we find that the integrand satisfies the property:
\[f(x) + f\left(\frac{\pi}{2} - x\right) = 0.\]
Since \(f(x)\) is odd with respect to \(x = \frac{\pi}{4}\), the integral over the symmetric interval \([0, \frac{\pi}{2}]\) evaluates to 0.
Thus:
\[ I = 0. \]
List I | List II | ||
A. | \(\int\limits^{\frac{\pi}{2}}_0\frac{\sin^{\frac{7}{2}}x}{\sin^{\frac{7}{2}}+\cos^{\frac{7}{2}}}dx\) | I. | \(\frac{\pi}{4}-\frac{1}{2}\) |
B. | \(\int\limits_0^{\pi}\frac{x\sin x}{1+\cos^2x}dx\) | II. | 0 |
C. | \(\int\limits^{\frac{\pi}{2}}_{-\frac{\pi}{2}}x\cos x\ dx\) | III. | \(\frac{\pi}{4}\) |
D. | \(\int\limits_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\sin^2x\ dx\) | IV. | \(\frac{\pi^2}{4}\) |