>
Exams
>
Mathematics
>
Some Properties of Definite Integrals
>
the value of the integral int limits 1 2 1 2 left
Question:
The value of the integral $\int\limits ^{1/2}_{-1/2}\left[\left(\frac{x+1}{x-1}\right)^{^2}+\left(\frac{x+1}{x-1}\right)^{^2}-2\right]^{^{1/2}}\:\:dx$ is
VITEEE - 2013
VITEEE
Updated On:
Feb 15, 2025
$\log\left(\frac{4}{3}\right)$
$4\,\log\left(\frac{3}{4}\right)$
$4\,\log\left(\frac{4}{3}\right)$
$\log\left(\frac{3}{4}\right)$
Hide Solution
Verified By Collegedunia
The Correct Option is
C
Solution and Explanation
$\int\limits_{-1 / 2}^{1 / 2}\left[\left(\frac{x+1}{x-1}\right)^{2}+\left(\frac{x-1}{x+1}\right)^{2}-2\right]^{1 / 2} d x$
$=\int\limits_{-1 / 2}^{1 / 2}\left[\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right)^{2}\right]^{1 / 2} d x $
$=\int\limits_{-1 / 2}^{1 / 2}\left|\frac{4 x}{x^{2}-1}\right| d x $
$=\int\limits_{-1 / 2}^{0}\left|\frac{4 x}{1-x^{2}}\right| d x+\int\limits_{0}^{1 / 2}\left|\frac{4 x}{1-x^{2}}\right| d x $
$=-4 \int\limits_{-1 / 2}^{0} \frac{x}{1-x^{2}} d x+4 \int_{0}^{1 / 2} \frac{x}{1-x^{2}} d x $
$=2\left\{\log \left(1-x^{2}\right\}_{-1 / 2}^{0}-2\left\{\log \left(1-x^{2}\right)\right\}_{0}^{1 / 2}\right. $
$=-2 \log \left(1-\frac{1}{4}\right)-2 \log \left(1-\frac{1}{4}\right)$
$=-4 \log \frac{3}{4}=4 \log \frac{4}{3}$
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Some Properties of Definite Integrals
If the solution of
\[ \left( 1 + 2e^\frac{x}{y} \right) dx + 2e^\frac{x}{y} \left( 1 - \frac{x}{y} \right) dy = 0 \]
is
\[ x + \lambda y e^\frac{x}{y} = c \quad \text{(where \(c\) is an arbitrary constant), then \( \lambda \) is:} \]
VITEEE - 2024
Mathematics
Some Properties of Definite Integrals
View Solution
\[ \lim_{x \to \frac{\pi}{2}} \frac{\int_{x^3}^{\left(\frac{\pi}{2}\right)^3} \left( \sin\left(2t^{1/3}\right) + \cos\left(t^{1/3}\right) \right) \, dt}{\left( x - \frac{\pi}{2} \right)^2} \] is equal to:
JEE Main - 2024
Mathematics
Some Properties of Definite Integrals
View Solution
Let \( f(x) = \int_0^x g(t) \log_e \left( \frac{1 - t}{1 + t} \right) dt \), where \( g \) is a continuous odd function. If \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( f(x) + \frac{x^2 \cos x}{1 + e^x} \right) dx = \left( \frac{\pi}{\alpha} \right)^2 - \alpha, \] then \( \alpha \) is equal to .....
JEE Main - 2024
Mathematics
Some Properties of Definite Integrals
View Solution
The value of $k \in \mathbb{N}$ for which the integral \[ I_n = \int_0^1 (1 - x^k)^n \, dx, \, n \in \mathbb{N}, \] satisfies $147 \, I_{20} = 148 \, I_{21}$ is:
JEE Main - 2024
Mathematics
Some Properties of Definite Integrals
View Solution
Prove that:
\[ \int_0^{\pi/2} \sin 2x \tan^{-1} (\sin x) \,dx = \left(\frac{\pi}{2} - 1\right) \]
UP Board XII - 2024
Mathematics
Some Properties of Definite Integrals
View Solution
View More Questions
Questions Asked in VITEEE exam
Let \( f(x) \) be defined as:
\[f(x) = \begin{cases} 3 - x, & x<-3 \\ 6, & -3 \leq x \leq 3 \\ 3 + x, & x>3 \end{cases}\]
Let \( \alpha \) be the number of points of discontinuity of \( f(x) \) and \( \beta \) be the number of points where \( f(x) \) is not differentiable. Then, \( \alpha + \beta \) is:
VITEEE - 2024
Matrices
View Solution
The area bounded by \( y - 1 = |x| \) and \( y + 1 = |x| \) is:
(a) \( \frac{1}{2} \)
VITEEE - 2024
Conic sections
View Solution
The length of the perpendicular from the point \( (1, -2, 5) \) on the line passing through \( (1, 2, 4) \) and parallel to the line given by \( x + y - z = 0 \) and \( x - 2y + 3z - 5 = 0 \) is:
VITEEE - 2024
Differential equations
View Solution
If \( A \) and \( B \) are the two real values of \( k \) for which the system of equations \( x + 2y + z = 1 \), \( x + 3y + 4z = k \), \( x + 5y + 10z = k^2 \) is consistent, then \( A + B = \):
(a) 3
VITEEE - 2024
Binomial theorem
View Solution
A and B are independent events of a random experiment if and only if:
VITEEE - 2024
Relations and functions
View Solution
View More Questions