>
Exams
>
Mathematics
>
Some Properties of Definite Integrals
>
the value of the integral int limits 1 2 1 2 left
Question:
The value of the integral $\int\limits ^{1/2}_{-1/2}\left[\left(\frac{x+1}{x-1}\right)^{^2}+\left(\frac{x+1}{x-1}\right)^{^2}-2\right]^{^{1/2}}\:\:dx$ is
VITEEE - 2013
VITEEE
Updated On:
Feb 15, 2025
$\log\left(\frac{4}{3}\right)$
$4\,\log\left(\frac{3}{4}\right)$
$4\,\log\left(\frac{4}{3}\right)$
$\log\left(\frac{3}{4}\right)$
Hide Solution
Verified By Collegedunia
The Correct Option is
C
Solution and Explanation
$\int\limits_{-1 / 2}^{1 / 2}\left[\left(\frac{x+1}{x-1}\right)^{2}+\left(\frac{x-1}{x+1}\right)^{2}-2\right]^{1 / 2} d x$
$=\int\limits_{-1 / 2}^{1 / 2}\left[\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right)^{2}\right]^{1 / 2} d x $
$=\int\limits_{-1 / 2}^{1 / 2}\left|\frac{4 x}{x^{2}-1}\right| d x $
$=\int\limits_{-1 / 2}^{0}\left|\frac{4 x}{1-x^{2}}\right| d x+\int\limits_{0}^{1 / 2}\left|\frac{4 x}{1-x^{2}}\right| d x $
$=-4 \int\limits_{-1 / 2}^{0} \frac{x}{1-x^{2}} d x+4 \int_{0}^{1 / 2} \frac{x}{1-x^{2}} d x $
$=2\left\{\log \left(1-x^{2}\right\}_{-1 / 2}^{0}-2\left\{\log \left(1-x^{2}\right)\right\}_{0}^{1 / 2}\right. $
$=-2 \log \left(1-\frac{1}{4}\right)-2 \log \left(1-\frac{1}{4}\right)$
$=-4 \log \frac{3}{4}=4 \log \frac{4}{3}$
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Some Properties of Definite Integrals
If the solution of
\[ \left( 1 + 2e^\frac{x}{y} \right) dx + 2e^\frac{x}{y} \left( 1 - \frac{x}{y} \right) dy = 0 \]
is
\[ x + \lambda y e^\frac{x}{y} = c \quad \text{(where \(c\) is an arbitrary constant), then \( \lambda \) is:} \]
VITEEE - 2024
Mathematics
Some Properties of Definite Integrals
View Solution
\[ \lim_{x \to \frac{\pi}{2}} \frac{\int_{x^3}^{\left(\frac{\pi}{2}\right)^3} \left( \sin\left(2t^{1/3}\right) + \cos\left(t^{1/3}\right) \right) \, dt}{\left( x - \frac{\pi}{2} \right)^2} \] is equal to:
JEE Main - 2024
Mathematics
Some Properties of Definite Integrals
View Solution
Let \( f(x) = \int_0^x g(t) \log_e \left( \frac{1 - t}{1 + t} \right) dt \), where \( g \) is a continuous odd function. If \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( f(x) + \frac{x^2 \cos x}{1 + e^x} \right) dx = \left( \frac{\pi}{\alpha} \right)^2 - \alpha, \] then \( \alpha \) is equal to .....
JEE Main - 2024
Mathematics
Some Properties of Definite Integrals
View Solution
The value of $k \in \mathbb{N}$ for which the integral \[ I_n = \int_0^1 (1 - x^k)^n \, dx, \, n \in \mathbb{N}, \] satisfies $147 \, I_{20} = 148 \, I_{21}$ is:
JEE Main - 2024
Mathematics
Some Properties of Definite Integrals
View Solution
Prove that:
\[ \int_0^{\pi/2} \sin 2x \tan^{-1} (\sin x) \,dx = \left(\frac{\pi}{2} - 1\right) \]
UP Board XII - 2024
Mathematics
Some Properties of Definite Integrals
View Solution
View More Questions
Questions Asked in VITEEE exam
Images of consonants of the capital English alphabets are observed in a mirror. What is the number of images of these which look like their original shapes?
VITEEE - 2025
Odd one Out
View Solution
What is the pH of a \( 0.01 \, \text{M} \) solution of \( \text{NaOH} \)?
VITEEE - 2025
Acids and Bases
View Solution
A bulb rated 60 W operates for 2 hours. How much energy does it consume in this time?
VITEEE - 2025
Electric Power
View Solution
A ball is dropped from a height of 20 m. What is its velocity just before hitting the ground? (Take \( g = 9.8 \, \text{m/s}^2 \))
VITEEE - 2025
Motion in a straight line
View Solution
Images of vowels of the capital English alphabets are observed in a mirror. What is the number of images of these vowels that look like their original shapes?
VITEEE - 2025
Odd one Out
View Solution
View More Questions