>
Exams
>
Mathematics
>
Some Properties of Definite Integrals
>
the value of the integral int limits 1 2 1 2 left
Question:
The value of the integral $\int\limits ^{1/2}_{-1/2}\left[\left(\frac{x+1}{x-1}\right)^{^2}+\left(\frac{x+1}{x-1}\right)^{^2}-2\right]^{^{1/2}}\:\:dx$ is
VITEEE - 2013
VITEEE
Updated On:
Feb 15, 2025
$\log\left(\frac{4}{3}\right)$
$4\,\log\left(\frac{3}{4}\right)$
$4\,\log\left(\frac{4}{3}\right)$
$\log\left(\frac{3}{4}\right)$
Hide Solution
Verified By Collegedunia
The Correct Option is
C
Solution and Explanation
$\int\limits_{-1 / 2}^{1 / 2}\left[\left(\frac{x+1}{x-1}\right)^{2}+\left(\frac{x-1}{x+1}\right)^{2}-2\right]^{1 / 2} d x$
$=\int\limits_{-1 / 2}^{1 / 2}\left[\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right)^{2}\right]^{1 / 2} d x $
$=\int\limits_{-1 / 2}^{1 / 2}\left|\frac{4 x}{x^{2}-1}\right| d x $
$=\int\limits_{-1 / 2}^{0}\left|\frac{4 x}{1-x^{2}}\right| d x+\int\limits_{0}^{1 / 2}\left|\frac{4 x}{1-x^{2}}\right| d x $
$=-4 \int\limits_{-1 / 2}^{0} \frac{x}{1-x^{2}} d x+4 \int_{0}^{1 / 2} \frac{x}{1-x^{2}} d x $
$=2\left\{\log \left(1-x^{2}\right\}_{-1 / 2}^{0}-2\left\{\log \left(1-x^{2}\right)\right\}_{0}^{1 / 2}\right. $
$=-2 \log \left(1-\frac{1}{4}\right)-2 \log \left(1-\frac{1}{4}\right)$
$=-4 \log \frac{3}{4}=4 \log \frac{4}{3}$
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Some Properties of Definite Integrals
The value of \[ \int_{-\pi/6}^{\pi/6} \left( \frac{\pi + 4x^{11}}{1 - \sin\left(|x| + \frac{\pi}{6}\right)} \right) dx \] is equal to
JEE Main - 2026
Mathematics
Some Properties of Definite Integrals
View Solution
The number of elements in the set \[ S = \left\{ x : x \in [0,100] \text{ and } \int_{0}^{x} t^2 \sin(x - t)\,dt = x^2 \right\} \] is
JEE Main - 2026
Mathematics
Some Properties of Definite Integrals
View Solution
\(6 \int_{0}^{\pi} (\sin 3x + \sin 2x + \sin x)dx\) is equal to:
JEE Main - 2026
Mathematics
Some Properties of Definite Integrals
View Solution
Find the area bounded by \( y = \max \{ \sin x, \cos x \} \) when \( x \in \left[ 0, \frac{3\pi}{2} \right] \) with the x-axis:
JEE Main - 2026
Mathematics
Some Properties of Definite Integrals
View Solution
The value of \[ \int_{\frac{\pi}{24}}^{\frac{5\pi}{24}} \frac{1}{1 + \sqrt{\tan 2x}} \, dx \] is:
JEE Main - 2026
Mathematics
Some Properties of Definite Integrals
View Solution
View More Questions
Questions Asked in VITEEE exam
Find the value of \( x \) in the following equation:
\[ \frac{2}{x} + \frac{3}{x + 1} = 1 \]
VITEEE - 2025
Algebra
View Solution
How many numbers between 0 and 9 look the same when observed in a mirror?
VITEEE - 2025
Odd one Out
View Solution
In a code language, 'TIGER' is written as 'JUISF'. How will 'EQUAL' be written in that language?
VITEEE - 2025
Odd one Out
View Solution
In a code language, 'TIGER' is written as 'JUISF'. How will 'EQUAL' be written in that language?
VITEEE - 2025
Data Interpretation
View Solution
TUV : VYB :: PRA : ?
VITEEE - 2025
Odd one Out
View Solution
View More Questions