The given integral is: \(\int\frac{1-\sin x}{\cos^2 x}dx\).
To solve this, we first rewrite the integrand: \(\frac{1-\sin x}{\cos^2 x}=\frac{1}{\cos^2 x}-\frac{\sin x}{\cos^2 x}\).
This can be further expressed as: \(\sec^2 x-\sec x\tan x\).
Therefore, our integral becomes:
\(\int(\sec^2 x-\sec x\tan x)dx\)
Split this into two separate integrals:
\(\int\sec^2 xdx - \int\sec x\tan xdx\)
We know:
- \(\int\sec^2 xdx=\tan x+C_1\)
- \(\int\sec x\tan xdx=\sec x+C_2\)
Thus, combining these, we get:
\(\tan x-\sec x+C\), where \(C=C_1-C_2\) is a constant.
Hence, the value of the integral is tanx - secx + C, where C is an arbitrary constant.