>
Exams
>
Mathematics
>
Some Properties of Definite Integrals
>
the value of the integral 1 e 2x e 2x dx is equal
Question:
The value of the integral
∫
1
e
2
x
+
e
−
2
x
d
x
\int{\frac{1}{{{e}^{2x}}+{{e}^{-2x}}}}\,\,dx
∫
e
2
x
+
e
−
2
x
1
d
x
is equal to
JKCET - 2011
JKCET
Updated On:
Jun 23, 2024
2
tan
−
1
(
e
2
x
)
+
C
2\,{{\tan }^{-1}}\,({{e}^{2x}})+C
2
tan
−
1
(
e
2
x
)
+
C
tan
−
1
(
e
2
x
)
+
C
{{\tan }^{-1}}\,({{e}^{2x}})+C
tan
−
1
(
e
2
x
)
+
C
1
2
tan
−
1
(
e
2
x
)
+
C
\frac{1}{2}{{\tan }^{-1}}\,({{e}^{2x}})+C
2
1
tan
−
1
(
e
2
x
)
+
C
−
1
(
e
2
x
+
e
−
2
x
)
2
+
C
\frac{-1}{{{({{e}^{2x}}+{{e}^{-2x}})}^{2}}}+C
(
e
2
x
+
e
−
2
x
)
2
−
1
+
C
Hide Solution
Verified By Collegedunia
The Correct Option is
C
Solution and Explanation
∫
d
x
e
2
x
+
e
−
2
x
⇒
∫
e
2
x
e
4
x
+
1
d
x
\int{\frac{dx}{{{e}^{2x}}+{{e}^{-2x}}}}\Rightarrow \,\int{\frac{{{e}^{2x}}}{{{e}^{4x}}+1}}dx
∫
e
2
x
+
e
−
2
x
d
x
⇒
∫
e
4
x
+
1
e
2
x
d
x
=
∫
e
2
x
1
+
(
e
2
x
)
2
d
x
,
=\int{\frac{{{e}^{2x}}}{1+{{({{e}^{2x}})}^{2}}}}dx,
=
∫
1
+
(
e
2
x
)
2
e
2
x
d
x
,
put
t
=
e
2
x
t={{e}^{2x}}
t
=
e
2
x
d
t
=
2
e
2
x
d
x
dt=2{{e}^{2x}}\,dx
d
t
=
2
e
2
x
d
x
⇒
\Rightarrow
⇒
∫
d
t
2
(
1
+
t
2
)
=
1
2
tan
−
1
t
+
C
\int{\frac{dt}{2(1+{{t}^{2}})}}=\frac{1}{2}{{\tan }^{-1}}t+C
∫
2
(
1
+
t
2
)
d
t
=
2
1
tan
−
1
t
+
C
⇒
\Rightarrow
⇒
=
1
2
tan
−
1
(
e
2
x
)
+
C
=\frac{1}{2}{{\tan }^{-1}}({{e}^{2x}})+C
=
2
1
tan
−
1
(
e
2
x
)
+
C
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Some Properties of Definite Integrals
If the solution of
(
1
+
2
e
x
y
)
d
x
+
2
e
x
y
(
1
−
x
y
)
d
y
=
0
\left( 1 + 2e^\frac{x}{y} \right) dx + 2e^\frac{x}{y} \left( 1 - \frac{x}{y} \right) dy = 0
(
1
+
2
e
y
x
)
d
x
+
2
e
y
x
(
1
−
y
x
)
d
y
=
0
is
x
+
λ
y
e
x
y
=
c
(where
c
is an arbitrary constant), then
λ
is:
x + \lambda y e^\frac{x}{y} = c \quad \text{(where \(c\) is an arbitrary constant), then \( \lambda \) is:}
x
+
λ
y
e
y
x
=
c
(where
c
is an arbitrary constant), then
λ
is:
VITEEE - 2024
Mathematics
Some Properties of Definite Integrals
View Solution
lim
x
→
π
2
∫
x
3
(
π
2
)
3
(
sin
(
2
t
1
/
3
)
+
cos
(
t
1
/
3
)
)
d
t
(
x
−
π
2
)
2
\lim_{x \to \frac{\pi}{2}} \frac{\int_{x^3}^{\left(\frac{\pi}{2}\right)^3} \left( \sin\left(2t^{1/3}\right) + \cos\left(t^{1/3}\right) \right) \, dt}{\left( x - \frac{\pi}{2} \right)^2}
x
→
2
π
lim
(
x
−
2
π
)
2
∫
x
3
(
2
π
)
3
(
sin
(
2
t
1/3
)
+
cos
(
t
1/3
)
)
d
t
is equal to:
JEE Main - 2024
Mathematics
Some Properties of Definite Integrals
View Solution
Let
f
(
x
)
=
∫
0
x
g
(
t
)
log
e
(
1
−
t
1
+
t
)
d
t
f(x) = \int_0^x g(t) \log_e \left( \frac{1 - t}{1 + t} \right) dt
f
(
x
)
=
∫
0
x
g
(
t
)
lo
g
e
(
1
+
t
1
−
t
)
d
t
, where
g
g
g
is a continuous odd function. If
∫
−
π
2
π
2
(
f
(
x
)
+
x
2
cos
x
1
+
e
x
)
d
x
=
(
π
α
)
2
−
α
,
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( f(x) + \frac{x^2 \cos x}{1 + e^x} \right) dx = \left( \frac{\pi}{\alpha} \right)^2 - \alpha,
∫
−
2
π
2
π
(
f
(
x
)
+
1
+
e
x
x
2
cos
x
)
d
x
=
(
α
π
)
2
−
α
,
then
α
\alpha
α
is equal to .....
JEE Main - 2024
Mathematics
Some Properties of Definite Integrals
View Solution
The value of
k
∈
N
k \in \mathbb{N}
k
∈
N
for which the integral
I
n
=
∫
0
1
(
1
−
x
k
)
n
d
x
,
n
∈
N
,
I_n = \int_0^1 (1 - x^k)^n \, dx, \, n \in \mathbb{N},
I
n
=
∫
0
1
(
1
−
x
k
)
n
d
x
,
n
∈
N
,
satisfies
147
I
20
=
148
I
21
147 \, I_{20} = 148 \, I_{21}
147
I
20
=
148
I
21
is:
JEE Main - 2024
Mathematics
Some Properties of Definite Integrals
View Solution
Prove that:
∫
0
π
/
2
sin
2
x
tan
−
1
(
sin
x
)
d
x
=
(
π
2
−
1
)
\int_0^{\pi/2} \sin 2x \tan^{-1} (\sin x) \,dx = \left(\frac{\pi}{2} - 1\right)
∫
0
π
/2
sin
2
x
tan
−
1
(
sin
x
)
d
x
=
(
2
π
−
1
)
UP Board XII - 2024
Mathematics
Some Properties of Definite Integrals
View Solution
View More Questions
Questions Asked in JKCET exam
A force
F
=
3
x
2
+
2
x
+
1
F = 3x^2 + 2x + 1
F
=
3
x
2
+
2
x
+
1
acts on a body in the
x
x
x
-direction. The work done by this force during a displacement from
x
=
−
1
x = -1
x
=
−
1
to
+
1
+1
+
1
is
JKCET - 2019
work, energy and power
View Solution
A moving block having mass
m
m
m
, collides with another stationary block having mass
4
m
4\,m
4
m
. The lighter block comes to rest after collision. When the initial velocity of the lighter block is
v
v
v
, then the value of coefficient of restitution (e) will be
JKCET - 2019
work, energy and power
View Solution
What is the colour of the flame on heating potassium in the flame of a Bunsen burner?
JKCET - 2019
GROUP 1 ELEMENTS
View Solution
If
a
a
a
,
b
b
b
,
c
c
c
are the lengths of three edges of unit cell,
α
\alpha
α
is the angle between side
b
b
b
and
c
c
c
,
β
\beta
β
is the angle between side
a
a
a
and
c
c
c
and
γ
\gamma
γ
is the angle between side
a
a
a
and
b
b
b
, what is the Bravais Lattice dimensions of a tetragonal crystal?
JKCET - 2019
The solid state
View Solution
Which of the following compounds is known as copper glance?
JKCET - 2019
General Principles and Processes of Isolation of Elements
View Solution
View More Questions