Question:

The value of the integral 1e2x+e2x  dx \int{\frac{1}{{{e}^{2x}}+{{e}^{-2x}}}}\,\,dx is equal to

Updated On: Jun 23, 2024
  • 2tan1(e2x)+C 2\,{{\tan }^{-1}}\,({{e}^{2x}})+C
  • tan1(e2x)+C {{\tan }^{-1}}\,({{e}^{2x}})+C
  • 12tan1(e2x)+C \frac{1}{2}{{\tan }^{-1}}\,({{e}^{2x}})+C
  • 1(e2x+e2x)2+C \frac{-1}{{{({{e}^{2x}}+{{e}^{-2x}})}^{2}}}+C
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

dxe2x+e2xe2xe4x+1dx \int{\frac{dx}{{{e}^{2x}}+{{e}^{-2x}}}}\Rightarrow \,\int{\frac{{{e}^{2x}}}{{{e}^{4x}}+1}}dx
=e2x1+(e2x)2dx, =\int{\frac{{{e}^{2x}}}{1+{{({{e}^{2x}})}^{2}}}}dx,
put t=e2x t={{e}^{2x}} dt=2e2xdx dt=2{{e}^{2x}}\,dx
\Rightarrow dt2(1+t2)=12tan1t+C \int{\frac{dt}{2(1+{{t}^{2}})}}=\frac{1}{2}{{\tan }^{-1}}t+C
\Rightarrow =12tan1(e2x)+C =\frac{1}{2}{{\tan }^{-1}}({{e}^{2x}})+C
Was this answer helpful?
0
0

Top Questions on Some Properties of Definite Integrals

View More Questions