Step 1: Evaluate $\tan^{-1}(\sqrt{3})$.
The value of $\tan^{-1}(\sqrt{3})$ is the angle whose tangent is $\sqrt{3}$. We know that:
\[
\tan\left(\dfrac{\pi}{3}\right) = \sqrt{3}
\]
So,
\[
\tan^{-1}(\sqrt{3}) = \dfrac{\pi}{3}.
\]
Step 2: Evaluate $\sec^{-1}(-2)$.
The value of $\sec^{-1}(-2)$ is the angle whose secant is $-2$. The secant function is the reciprocal of the cosine function, so we are looking for the angle whose cosine is $-1/2$. This corresponds to the angle:
\[
\sec^{-1}(-2) = \dfrac{2\pi}{3}.
\]
Step 3: Subtract the two values.
Now, we subtract the two values we calculated:
\[
\tan^{-1}(\sqrt{3}) - \sec^{-1}(-2) = \dfrac{\pi}{3} - \dfrac{2\pi}{3} = -\dfrac{\pi}{3}.
\]
Step 4: Conclusion.
The correct answer is (D) $\dfrac{2\pi}{3}$.