Step 1: Recall the identity for inverse trigonometric functions.
We know that:
\[
\tan^{-1}(x) + \cot^{-1}(x) = \frac{\pi}{2}, \text{ for } x > 0.
\]
However, for negative values of $x$, the identity adjusts based on the quadrant.
Step 2: Simplify the expression.
Given expression is:
\[
\tan^{-1}(\sqrt{3}) - \cot^{-1}(-\sqrt{3}).
\]
First, use the identity for inverse tangent and cotangent:
\[
\tan^{-1}(\sqrt{3}) = \frac{\pi}{3} \text{(since tan}(\frac{\pi}{3}) = \sqrt{3}),
\]
\[
\cot^{-1}(-\sqrt{3}) = \frac{\pi}{3} \text{(since cot}(\frac{\pi}{3}) = \frac{1}{\sqrt{3}} \text{, and negative value flips the sign)}.
\]
Step 3: Conclusion.
Thus, the value is:
\[
\frac{\pi}{3} - \frac{\pi}{3} = 0.
\]
So, the correct answer is (C) $0$.