The value of \( \sin(\frac{5\pi}{24}) \cdot \cos(\frac{\pi}{24}) \) is
Show Hint
Product-to-Sum trigonometric identities:
\(2\sin A \cos B = \sin(A+B) + \sin(A-B)\)
\(2\cos A \sin B = \sin(A+B) - \sin(A-B)\)
\(2\cos A \cos B = \cos(A+B) + \cos(A-B)\)
\(2\sin A \sin B = \cos(A-B) - \cos(A+B)\)
Standard angle values: \(\sin(\pi/6)=1/2\), \(\sin(\pi/4)=\sqrt{2}/2\), \(\cos(\pi/6)=\sqrt{3}/2\), \(\cos(\pi/4)=\sqrt{2}/2\).