To find \( \sin(\cot^{-1}(x)) \), we follow these steps:
Step 1: Define the angle
Let \( \theta = \cot^{-1}(x) \). By the definition of the inverse cotangent function, we have:
\[
\cot(\theta) = x
\]
This implies that:
\[
\theta \in (0, \pi) \quad \text{(principal range of the cotangent inverse function)}.
\]
Step 2: Represent in terms of a right triangle
From the definition of cotangent:
\[
\cot(\theta) = \frac{\text{adjacent}}{\text{opposite}}
\]
Assign values based on the given \( \cot(\theta) = x \):
\[
\text{adjacent side} = x, \quad \text{opposite side} = 1.
\]
Step 3: Calculate the hypotenuse
Using the Pythagorean theorem:
\[
\text{hypotenuse} = \sqrt{\text{adjacent}^2 + \text{opposite}^2} = \sqrt{x^2 + 1}.
\]
Step 4: Find \( \sin(\theta) \)
From the definition of sine:
\[
\sin(\theta) = \frac{\text{opposite side}}{\text{hypotenuse}}.
\]
Substituting the values:
\[
\sin(\theta) = \frac{1}{\sqrt{x^2 + 1}}.
\]
Step 5: Final result
Since \( \theta = \cot^{-1}(x) \), we conclude:
\[
\sin(\cot^{-1}(x)) = \frac{1}{\sqrt{x^2 + 1}}.
\]
Final Answer:
\[
\boxed{\frac{1}{\sqrt{1 + x^2}}}.
\]