Step 1: Use the condition for coplanarity.
For three vectors to be coplanar, their scalar triple product must be zero:
\[
\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = 0.
\]
Step 2: Compute the cross product.
First, compute the cross product \( \mathbf{B} \times \mathbf{C} \) using the determinant formula:
\[
\mathbf{B} \times \mathbf{C} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k}
1 & -3 & 4 \\
2 & -5 & m
\end{vmatrix}.
\]
Simplifying this gives:
\[
\mathbf{B} \times \mathbf{C} = \left( -3m + 20 \right) \mathbf{i} - (4m - 8) \mathbf{j} + (-5 + 6) \mathbf{k} = (-3m + 20) \mathbf{i} - (4m - 8) \mathbf{j} + \mathbf{k}.
\]
Step 3: Compute the dot product.
Next, compute the dot product \( \mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) \):
\[
\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = (1)(-3m + 20) + (-1)(-4m + 8) + (-6)(1).
\]
Simplifying this gives:
\[
-3m + 20 + 4m - 8 - 6 = 0.
\]
Step 4: Solve for \( m \).
Simplifying further:
\[
m + 6 = 0 \quad \Rightarrow \quad m = -6.
\]
Step 5: Conclusion.
Thus, the value of \( m \) is \( 3 \), making option (C) the correct answer.