Using logarithmic identities:
\[ \log_a\left(\frac{a}{b}\right) = \log_a(a) - \log_a(b) = 1 - \log_a(b) \] \[ \log_b\left(\frac{b}{a}\right) = \log_b(b) - \log_b(a) = 1 - \log_b(a) \]
\[ \log_a\left(\frac{a}{b}\right) + \log_b\left(\frac{b}{a}\right) = (1 - \log_a(b)) + (1 - \log_b(a)) \] \[ = 2 - (\log_a(b) + \log_b(a)) \]
Then using change of base:
\[ \log_b(a) = \frac{1}{x} \] \[ \Rightarrow \text{Expression becomes: } 2 - \left(x + \frac{1}{x} \right) \]
Let: \[ f(x) = x + \frac{1}{x} \] Using AM–GM Inequality: \[ x + \frac{1}{x} \geq 2 \text{ for all } x > 0 \] Therefore: \[ 2 - \left(x + \frac{1}{x} \right) \leq 0 \] So the maximum value of the expression is: \[ 2 - 2 = 0 \]
Since the expression is always ≤ 0, it can never be equal to 1.
\[ \boxed{1 \text{ is not a possible value}} \]
The product of all solutions of the equation \(e^{5(\log_e x)^2 + 3 = x^8, x > 0}\) , is :
When $10^{100}$ is divided by 7, the remainder is ?