The given expression can be simplified as follows:
\(log_{0.008}\sqrt{5}+log_{\sqrt{3}}\ 81−7\)
For \(log_{0.008}\sqrt{5}:\)
\(=log_{5^{−3}}(5^{\frac{1}{2}}) \)
\(=log_{5^{−3}}(5^{−\frac{3}{2}}) \)
\(=−\frac{1}{6}\)
For \(log_{\sqrt{3}}\ 81:\)
\(=log_{3^{\frac{1}{2}}}(3^4) \)
\(=log_{3^{\frac{1}{2}}}(3^2) \)
\(=2\)
Putting it all together:
\((−\frac{1}{6})+8−7=−\frac{1}{6}+1=\frac{5}{6}\)
Therefore, the required result is \(\frac{5}{6}.\)