Step 1: Recall the standard integral.
The given integral is in the form of the derivative of \( x^x \), as:
\[
\frac{d}{dx}(x^x) = x^x \cdot (1 + \log x)
\]
Step 2: Solve the integral.
Thus,
\[
\int x^x(1 + \log x) \, dx = \frac{1}{2} (1 + \log x)^2 + c
\]
Step 3: Conclude.
The correct answer is option (i).
Final Answer: \[ \boxed{\frac{1}{2}(1 + \log x)^2 + c} \]