Let \( I = \int \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} \, dx \).
Step 1: Use trigonometric substitution. Let \( \sin^{-1} x = t \), so \( x = \sin t \).
Differentiating, we get \( \frac{1}{\sqrt{1 - x^2}} \, dx = dt \), and consequently, \( \cos t = \sqrt{1 - x^2} \).
Step 2: Substitute into the integral. Substituting the expressions into the integral, we have: \[ I = \int \sin t \cdot t \, dt. \] This simplifies to: \[ I = t \cdot (-\cos t) + \int (-\cos t) \, dt. \]
Step 3: Simplify the expression. Simplifying further: \[ I = -t \cos t + \sin t + C. \]
Step 4: Back-substitute \( t = \sin^{-1} x \). Now, substitute \( t = \sin^{-1} x \) into the equation: \[ I = -(\sin^{-1} x) \cos (\sin^{-1} x) + \sin (\sin^{-1} x) + C. \] Using the identities \( \cos (\sin^{-1} x) = \sqrt{1 - x^2} \) and \( \sin (\sin^{-1} x) = x \), we get: \[ I = x - \sqrt{1 - x^2} \sin^{-1} x + C. \]
Final Answer: \[ \boxed{x - \sqrt{1 - x^2} \sin^{-1} x + C} \]
What is the empirical formula of a compound containing 40% sulfur and 60% oxygen by mass?