\( \log \left| \frac{xe^x}{1 + xe^x} \right| + C \)
\( \log \left| xe^x(1 + xe^x) \right| + C \)
\( \log \left| 1 + xe^x \right| + C \)
Hide Solution
Verified By Collegedunia
The Correct Option isB
Solution and Explanation
Consider the integral:
\[
I = \int \frac{x + 1}{x(1 + xe^x)} \, dx.
\]
Step 1: Apply substitution.
Let \( xe^x = t \), which implies that \( x + 1 = t \), and also \( dx = \frac{dt}{e^x} \).
Step 2: Transform the integral.
Substituting into the integral, we get:
\[
I = \int \frac{dt}{t(1 + t)}.
\]
Step 3: Simplify the integrand.
We can break the integrand into two simpler fractions:
\[
I = \int \left( \frac{1}{t} - \frac{1}{1 + t} \right) \, dt.
\]
Step 4: Integrate.
The integral of each term is straightforward:
\[
I = \log |t| - \log |1 + t| + C.
\]
Step 5: Substitute back \( t = xe^x \).
Substitute \( t = xe^x \) to return to the original variable:
\[
I = \log \left| \frac{xe^x}{1 + xe^x} \right| + C.
\]
Final Answer:
\[
\boxed{\log \left| \frac{xe^x}{1 + xe^x} \right| + C}
\]