We are given:
\[
\int_1^4 \log(\lfloor x \rfloor) \, dx
\]
The greatest integer function \( \lfloor x \rfloor \) is constant on the intervals:
- \( [1, 2) \Rightarrow \lfloor x \rfloor = 1 \)
- \( [2, 3) \Rightarrow \lfloor x \rfloor = 2 \)
- \( [3, 4) \Rightarrow \lfloor x \rfloor = 3 \)
Since the integral is from 1 to 4, and 4 is not included due to the floor function being constant in half-open intervals, we break the integral as:
\[
= \int_1^2 \log(1) \, dx + \int_2^3 \log(2) \, dx + \int_3^4 \log(3) \, dx
\]
Evaluate each:
- \( \int_1^2 \log(1) \, dx = 0 \) because \( \log 1 = 0 \)
- \( \int_2^3 \log(2) \, dx = \log 2 \cdot (3 - 2) = \log 2 \)
- \( \int_3^4 \log(3) \, dx = \log 3 \cdot (4 - 3) = \log 3 \)
\[
\Rightarrow \int_1^4 \log(\lfloor x \rfloor) \, dx = \log 2 + \log 3 = \log(2 \cdot 3) = \log 6
\]
\[
\boxed{\text{Correct answer: } \log 6}
\]