We are given the definite integral:
\[
\int_1^4 \log(\lfloor x \rfloor) \, dx
\]
The greatest integer function \( \lfloor x \rfloor \) is constant within each interval from \( n \) to \( n+1 \), where \( n \in \mathbb{Z} \). So, break the integral at integer points:
\[
= \int_1^2 \log(1) \, dx + \int_2^3 \log(2) \, dx + \int_3^4 \log(3) \, dx
\]
Evaluate each part:
- \( \int_1^2 \log(1) \, dx = \log(1)(2 - 1) = 0 \cdot 1 = 0 \)
- \( \int_2^3 \log(2) \, dx = \log(2)(3 - 2) = \log 2 \)
- \( \int_3^4 \log(3) \, dx = \log(3)(4 - 3) = \log 3 \)
So the total integral is:
\[
0 + \log 2 + \log 3 = \log(2 \cdot 3) = \log 6
\]
\[
\boxed{\int_1^4 \log(\lfloor x \rfloor) \, dx = \log 6}
\]