We evaluate the integral: \[ I = \int_{-1}^{1} x^2 \sin x \, dx. \] Step 1: Checking Function Symmetry The given function is: \[ f(x) = x^2 \sin x. \] - \( x^2 \) is an even function because \( x^2 = (-x)^2 \). - \( \sin x \) is an odd function because \( \sin(-x) = -\sin x \).
- The product of an even and an odd function is an odd function: \[ f(-x) = (-x)^2 \sin(-x) = x^2 (-\sin x) = -f(x). \]
Step 2: Evaluating the Integral Since \( f(x) \) is an odd function and the integration limits are symmetric about zero \([-a, a]\), we apply the property: \[ \int_{-a}^{a} {odd function} \, dx = 0. \] Thus, \[ I = 0. \]
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to: