Question:

The value of \( \int_{0}^{\pi} \tan^2 \left( \frac{\theta}{3} \right) d\theta \) is:

Show Hint

For integrals involving trigonometric identities, simplify the integrand using known identities such as \( \tan^2 \theta = \sec^2 \theta - 1 \). Also, remember to perform substitution for integrals with functions of \( \theta \).
  • \( \pi + \sqrt{3} \)
  • \( 3\sqrt{3} - \pi \)
  • \( \sqrt{3} - \pi \)
  • \( \pi - \sqrt{3} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We are asked to evaluate the integral \( \int_{0}^{\pi} \tan^2 \left( \frac{\theta}{3} \right) d\theta \). First, use the identity \( \tan^2 \theta = \sec^2 \theta - 1 \), so the integral becomes: \[ \int_{0}^{\pi} \left( \sec^2 \left( \frac{\theta}{3} \right) - 1 \right) d\theta \] This can be split into two integrals: \[ \int_{0}^{\pi} \sec^2 \left( \frac{\theta}{3} \right) d\theta - \int_{0}^{\pi} 1 \, d\theta \] For the first integral, apply substitution \( u = \frac{\theta}{3} \), which gives \( du = \frac{1}{3} d\theta \), so the limits change as follows: when \( \theta = 0 \), \( u = 0 \); and when \( \theta = \pi \), \( u = \frac{\pi}{3} \). The first integral becomes: \[ \int_{0}^{\pi/3} 3 \sec^2 u \, du = 3 \left[ \tan u \right]_{0}^{\pi/3} = 3 \left( \tan \left( \frac{\pi}{3} \right) - 0 \right) = 3 \times \sqrt{3} \] The second integral is straightforward: \[ \int_{0}^{\pi} 1 \, d\theta = \pi \] Now, combining both parts: \[ 3\sqrt{3} - \pi \] Thus, the value of the integral is \( 3\sqrt{3} - \pi \), matching option (B).
Was this answer helpful?
0
0

Questions Asked in CBSE CLASS XII exam

View More Questions