Question:

If \(A = \begin{bmatrix} 4 & 2 \\[0.3em] -3 & 3 \end{bmatrix}\), then \(A^{-1} =\)

Show Hint

Use the identity \( A^{-1} = \frac{1}{\det(A)} \cdot \text{adj}(A) \), and remember that expressions like \( (kI - A) \) can simplify inverse computations.
Updated On: May 4, 2025
  • \( \frac{1}{6}(7I - A) \)
  • \( \frac{1}{4}(5I - A) \)
  • \( \frac{1}{3}(7I - A) \)
  • \( \frac{1}{18}(7I - A) \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Let’s verify by using the identity \( A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \).

Given \(A = \begin{bmatrix} 4 & 2 \\[0.3em] -3 & 3 \end{bmatrix}\)

Determinant of A: \[ \text{det}(A) = (4)(3) - (-3)(2) = 12 + 6 = 18 \]

Adjoint of A: \(\text{adj}(A) = \begin{bmatrix} 3 & -2 \\[0.3em] 3 & 4 \end{bmatrix}\)

Thus,\(A^{-1} = \frac{1}{18} \begin{bmatrix} 3 & -2 \\[0.3em] 3 & 4 \end{bmatrix}\)

Now checking:

 

So: \(A^{-1} = \frac{1}{18}(7I - A)\)

Was this answer helpful?
0
0