We simplify the given integral using a substitution method. Let
\[
I = \int_0^1 \frac{dx}{e^x + e^{-x}}
\]
Using the identity $e^x + e^{-x} = 2 \cosh x$, the integral becomes:
\[
I = \int_0^1 \frac{dx}{2 \cosh x}
\]
This is a standard integral, and the result is:
\[
I = \frac{\pi}{4}
\]
Thus, the correct answer is $\frac{\pi}{4}$.