The given integral is:
\[ \int e^x \frac{1 + \sin x}{1 + \cos x} \, dx \]
We can simplify the expression inside the integral. By using the identity \( 1 + \cos x = 2 \cos^2 \left( \frac{x}{2} \right) \) and \( 1 + \sin x = 2 \sin \left( \frac{x}{2} \right) \cos \left( \frac{x}{2} \right) \), the expression becomes:
\[ \int e^x \frac{2 \sin \left( \frac{x}{2} \right) \cos \left( \frac{x}{2} \right)}{2 \cos^2 \left( \frac{x}{2} \right)} \, dx \]
After simplifying:
\[ \int e^x \tan \left( \frac{x}{2} \right) \, dx \]
The integral of \( e^x \tan \left( \frac{x}{2} \right) \) is:
\[ e^x \tan \left( \frac{x}{2} \right) + C \]
Thus, the correct answer is: (A) \( e^x \tan \frac{x}{2} + C \)