Question:

The value of $\dfrac{\sin\theta + \sin3\theta}{\cos\theta + \cos3\theta}$ is:

Show Hint

Apply sum-to-product identities for sums of sine or cosine of two angles.
Updated On: May 18, 2025
  • $\cos2\theta$
  • $\cot2\theta$
  • $\tan2\theta$
  • $\csc\theta + \sin\theta$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Use sum-to-product identities: \[ \sin\theta + \sin3\theta = 2\sin2\theta\cos\theta
\cos\theta + \cos3\theta = 2\cos2\theta\cos\theta \] \[ \Rightarrow \dfrac{\sin\theta + \sin3\theta}{\cos\theta + \cos3\theta} = \dfrac{2\sin2\theta\cos\theta}{2\cos2\theta\cos\theta} = \dfrac{\sin2\theta}{\cos2\theta} = \tan2\theta \]
Was this answer helpful?
0
0