Question:

The value of $\dfrac{1 + \tan^2 A}{1 + \cot^2 A}$ will be:

Show Hint

Always replace $1 + \tan^2 A$ with $\sec^2 A$ and $1 + \cot^2 A$ with $\csc^2 A$ for simplification.
Updated On: Nov 6, 2025
  • $\sec^2 A$
  • -1
  • $\cot^2 A$
  • $\tan^2 A$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Step 1: Use trigonometric identities.
We know $\sec^2 A = 1 + \tan^2 A$ and $\csc^2 A = 1 + \cot^2 A$.

Step 2: Substitute in the expression.
\[ \dfrac{1 + \tan^2 A}{1 + \cot^2 A} = \dfrac{\sec^2 A}{\csc^2 A} = \dfrac{1/\cos^2 A}{1/\sin^2 A} = \dfrac{\sin^2 A}{\cos^2 A} = \tan^2 A \]
Step 3: Conclusion.
Hence, $\dfrac{1 + \tan^2 A}{1 + \cot^2 A} = \tan^2 A$.
Was this answer helpful?
0
0