Concept:
This problem combines inverse trigonometric identities with equation solving.
First, simplify the constant \( k \) using standard half–angle identities.
Then reduce the equation using identities involving inverse sine and cosine, carefully applying domain restrictions.
Step 1: Evaluate the value of \( k \)
Let
\[
\alpha=\cos^{-1}\!\left(\frac{2}{3}\right)
\Rightarrow \sin\alpha=\frac{\sqrt5}{3}
\]
Using the identity:
\[
\tan\frac{\alpha}{2}=\frac{1-\cos\alpha}{\sin\alpha}
\]
\[
\tan\frac{\alpha}{2}
=\frac{1-\frac{2}{3}}{\frac{\sqrt5}{3}}
=\frac{1}{\sqrt5}
\]
Now,
\[
\tan\!\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)
=\frac{1+\tan(\alpha/2)}{1-\tan(\alpha/2)}
=\frac{1+\frac{1}{\sqrt5}}{1-\frac{1}{\sqrt5}}
=\frac{3+\sqrt5}{2}
\]
Next, let
\[
\beta=\sin^{-1}\!\left(\frac{2}{3}\right)
\Rightarrow \cos\beta=\frac{\sqrt5}{3}
\]
\[
\tan\frac{\beta}{2}
=\frac{1-\cos\beta}{\sin\beta}
=\frac{3-\sqrt5}{2}
\]
Hence,
\[
k=\frac{3+\sqrt5}{2}+\frac{3-\sqrt5}{2}=3
\]
Step 2: Simplify the given equation
Substitute \( k=3 \):
\[
\sin^{-1}(3x-1)=\sin^{-1}x-\cos^{-1}x
\]
Using the identity:
\[
\sin^{-1}x-\cos^{-1}x
=\sin^{-1}x-\left(\frac{\pi}{2}-\sin^{-1}x\right)
=2\sin^{-1}x-\frac{\pi}{2}
\]
So the equation becomes:
\[
\sin^{-1}(3x-1)=2\sin^{-1}x-\frac{\pi}{2}
\]
Step 3: Determine the domain
For \( \sin^{-1}(3x-1) \) to be defined:
\[
-1\le 3x-1\le 1 \Rightarrow 0\le x\le \frac{2}{3}
\]
For the right-hand side to lie in \( [-\tfrac{\pi}{2},\tfrac{\pi}{2}] \):
\[
0\le \sin^{-1}x\le \frac{\pi}{2}
\Rightarrow 0\le x\le 1
\]
Hence, the effective domain is:
\[
0\le x\le \frac{2}{3}
\]
Step 4: Solve the equation
Let \( t=\sin^{-1}x \).
Then:
\[
\sin(2t-\tfrac{\pi}{2})=3x-1
\]
Since \( \sin(2t-\tfrac{\pi}{2})=-\cos 2t \),
\[
-\cos 2t=3x-1
\]
But
\[
\cos 2t=1-2\sin^2 t=1-2x^2
\]
So,
\[
-(1-2x^2)=3x-1
\Rightarrow 2x^2=3x
\Rightarrow x(2x-3)=0
\]
Step 5: Check admissible solutions
\[
x=0 \quad \text{or} \quad x=\frac{3}{2}
\]
Only \( x=0 \) lies in \( [0,\tfrac{2}{3}] \).
Step 6: Verify
At \( x=0 \):
\[
\sin^{-1}(-1)=-\frac{\pi}{2},\quad
\sin^{-1}(0)-\cos^{-1}(0)=0-\frac{\pi}{2}=-\frac{\pi}{2}
\]
Hence, it satisfies the equation.
Final Answer:
\[
\boxed{1}
\]